|
D.9.1.6 AGcode_LProcedure from library
Example: LIB "brnoeth.lib"; int plevel=printlevel; printlevel=-1; ring s=2,(x,y),lp; list HC=Adj_div(x3+y2+y); → The genus of the curve is 1 HC=NSplaces(1..2,HC); HC=extcurve(2,HC); → Total number of rational places : NrRatPl = 9 def ER=HC[1][4]; setring ER; intvec G=5; // the rational divisor G = 5*HC[3][1] intvec D=2..9; // D = sum of the rational places no. 2..9 over F_4 // let us construct the corresponding evaluation AG code : matrix C=AGcode_L(G,D,HC); → Vector basis successfully computed // here is a linear code of type [8,5,>=3] over F_4 print(C); → 0,0,(a), (a+1),1, 1, (a+1),(a), → 1,0,(a), (a+1),(a),(a+1),(a), (a+1), → 1,1,1, 1, 1, 1, 1, 1, → 0,0,(a+1),(a), 1, 1, (a), (a+1), → 0,0,(a+1),(a), (a),(a+1),1, 1 printlevel=plevel; See also: AGcode_Omega; Adj_div; BrillNoether; extcurve. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |