Top
Back: A.5 Long coefficients
Forward: A.7 T1 and T2
FastBack: Appendix A Examples
FastForward: Appendix B Polynomial data
Up: Appendix A Examples
Top: 1 Preface
Contents: Table of Contents
Index: F Index
About: About This Document

A.6 Parameters

Let us deform the above ideal now by introducing a parameter t and compute over the ground field Q(t). We compute the dimension at the generic point, i.e., $dim_{Q(t)}Q(t)[x,y]/j$. (This gives the same result as for the deformed ideal above. Hence, the above small deformation was "generic".)

For almost all $a \in Q$ this is the same as $dim_Q Q[x,y]/j_0$, where $j_0=j\vert _{t=a}$.

  ring Rt = (0,t),(x,y),lp;
  Rt;
→ //   characteristic : 0
→ //   1 parameter    : t 
→ //   minpoly        : 0
→ //   number of vars : 2
→ //        block   1 : ordering lp
→ //                  : names    x y 
→ //        block   2 : ordering C
  poly f = x5+y11+xy9+x3y9;
  ideal i = jacob(f);
  ideal j = i,i[1]*i[2]+t*x5y8;  // deformed ideal, parameter t
  vdim(std(j));
→ 40
  ring R=0,(x,y),lp;
  ideal i=imap(Rt,i);
  int a=random(1,30000);
  ideal j=i,i[1]*i[2]+a*x5y8;  // deformed ideal, fixed integer a
  vdim(std(j));
→ 40

Top Back: A.5 Long coefficients Forward: A.7 T1 and T2 FastBack: Appendix A Examples FastForward: Appendix B Polynomial data Up: Appendix A Examples Top: 1 Preface Contents: Table of Contents Index: F Index About: About This Document
            User manual for Singular version 2-0-4, October 2002, generated by texinfo.