Top
Back: D.6.3.2 HilbertWeights
Forward: D.6.3.4 ImageGroup
FastBack: Appendix D SINGULAR libraries
FastForward: E Release Notes
Up: D.6.3 rinvar_lib
Top: 1 Preface
Contents: Table of Contents
Index: F Index
About: About This Document

D.6.3.3 ImageVariety

Procedure from library rinvar.lib (see section rinvar_lib).

Usage:

ImageVariety(ideal I, F [, w]);ideal I; F is a list/ideal, intvec w.

Purpose:

compute the Zariski closure of the image of the variety of I under the morphism F.

Note:

if ’I’ and ’F’ are quasihomogeneous w.r.t. ’w’ then the Hilbert-driven ’std’ is used.

Return:

polynomial ring over the same ground field, containing the ideal ’imageid’. The variables are Y(1),...,Y(k) where k = size(F) - ’imageid’ is the ideal of the Zariski closure of F(X) where X is the variety of I.

Example:

LIB "rinvar.lib";
ring B   = 0,(x,y),dp;
ideal I  = x4 - y4;
ideal F  = x2, y2, x*y;
def R = ImageVariety(I, F);
setring R;
imageid;
→ imageid[1]=Y(1)*Y(2)-Y(3)^2
→ imageid[2]=Y(1)^2-Y(2)^2
→ imageid[3]=Y(2)^3-Y(1)*Y(3)^2

Top Back: D.6.3.2 HilbertWeights Forward: D.6.3.4 ImageGroup FastBack: Appendix D SINGULAR libraries FastForward: E Release Notes Up: D.6.3 rinvar_lib Top: 1 Preface Contents: Table of Contents Index: F Index About: About This Document
            User manual for Singular version 2-0-4, October 2002, generated by texinfo.