Cygwin/X Contributor’s Guide

Harold L Hunt, 11

Cygwin/X Contributor’s Guide
by Harold L Hunt, IT

Copyright (c) 2001 Harold L Hunt II. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Revision History

Revision 0.6.6 2004-04-03 Revised by: harold @codeweavers.com

Remove outdated instructions.
Revision 0.6.5 2003-09-20 Revised by: huntharo@msu.edu

Update cross compiling instructions.

Revision 0.6.4 2003-09-19 Revised by: huntharo@msu.edu

Add expat and cygipc to required devel packages.

Revision 0.6.3 2003-07-26 Revised by: huntharo @msu.edu

Update Indir build instructions and add required devel packages.

Revision 0.6.2 2003-01-01 Revised by: huntharo@msu.edu

Update cross compiling section.

Revision 0.6.1 2002-05-16 Revised by: huntharo@msu.edu

Update the version of the binutils package.

Revision 0.6.0 2002-01-07 Revised by: huntharo @msu.edu

Add initial information to the Documentation chapter.

Revision 0.3.2 2001-11-13 Revised by: huntharo@msu.edu

Wrote two and a half pages in the Server Architecture - User Input section. Check and correct spelling.
Revision 0.3.1 2001-10-28 Revised by: huntharo@msu.edu

Added and completed roughly 1/2 to 1/3 of a new Server Architecture section. Added and completed an initial version of a Packing a C;
Revision 0.3.0 2001-10-19 Revised by: huntharo @msu.edu

Bumped the revision number to 0.3.0 to indicate that roughly 1/3 of the planned contents are present.
Revision 0.0.6 2001-07-17 Revised by: huntharo@msu.edu

Revision 0.0.5 2001-07-12 Revised by: huntharo@msu.edu

Revision 0.0.4 2001-07-02 Revised by: huntharo@msu.edu
Contributor’s was misspelled, changed to Contributor’s.
Revision 0.0.3 2001-06-13 Revised by: huntharo @msu.edu

Revision 0.0.2 2001-06-12 Revised by: huntharo@msu.edu

Revision 0.0.1 2001-06-11 Revised by: huntharo@msu.edu
Initial content for the Programming chapter.

Revision 0.0.0 2001-05-22 Revised by: huntharo @msu.edu
Initial release.

Table of Contents

1. Overview 1
2. Programming 2
OVEIVIEW ..eveiieiiiiiee e ettt e e eeete e e e e eettteeeeeettteeeeeeetaaeeeeestasaeeeeassssaeeeeassseeeeeastsseessantssseeeasssseeesassssseeeassaseeeaansseeeeanes 2
S0urce Code Tree LayOUL.......c..cocuiiiiiiiiiiiiiiec ettt ettt e 2
Cygwin/X X Server ATCRIECTUTIEccuiiuiiiiiiiiiiiiiiccte ettt s 4
SEIVEE PIIVALES ...uveiiiiiiiiiee ettt eee e e ettt e e e e e tte e e e e eabaeeeeestaaeeeeeeasaeeaeeessaseeeseassseeeeeesssseeeeansreeeeans 4

IVLACTOS ...ttt e e et e e e e ettt e e e e e tta e e e e eataeeeeeentaeeaeeebraeeeeeartaeeaeaantraeeeeannres 4

ENGINE SYSEEIM ...ttt ettt b ettt a et s ae et e s b e e bt en et e e st et sae et e nbeese et e eseens 5

Shadow FB ENGINESccueoiuiiiiiiiitieieteetee ettt ettt sttt ettt sb e et nae s bt ete st eae e e saeenean 5

Native GDI ENZINE......oouiiiiiiiiieietie ettt ettt ettt ettt et e saeeeesbeeanns 5

Primary FB ENINE........cooiiiiiiiiiiiiiiee ettt st st 6

USCIE TIPUL ..ttt ettt e b e e et e bt et e s bt e st e b e eb e es et e e bt e aesbe e st e beebeeneeneeenie 6

KEYDOAIT ...ttt sttt bt et b et sb e 6

MIOUSE ...ttt e et e e et e e e e tb e e e e e e ttaeeeeearaeeeeeastaeaeeeantaaeeeeartaeeeeaanrraeeeennnres 8

Obtaining the SOUICE COUEoouiriiiiiiiiiieieie ettt eb ettt ettt b et ebt et bt et e s besbeenbesaeenee 8
INALIVE COMPIINE ..ttt ettt b ettt e be et sbe e st e b e bt ea b e bt e bt et sbeestenbeebeennenaeene 8
Compiling the SOUICE COAE.....c..oouiiiiriiriieiirieeiteeeeete ettt sttt ettt st ebe e 9

COMPIING OVEIVIEW ...ttt ettt ettt ettt sttt st e b s bt eate et saeentesbeeanebesbeenee 9

Required Packages for COMPILINGcccuevveriieriienienieeiieieesteete ettt siee st e seteebeeseenes 9

Building and Installing INAILcooiiiiiriiiiieieee ettt s 10

Standard BUIld.........ccveiiiiiiiiiiciie ettt e e e ta e e etb e e e taeesbaeesaraeenes 11

DEDUZ BUILA ...ttt ettt et e st st et e st e st e sabe e be e beenaneea 12

Installing @ 10Cal DUILAcc..ooiiiiiiiii ettt sttt ettt esbe e e e 14

Keeping your source code tree UpPAated.........c.eerueerieriiriiieniienienie ettt ettt et st sbeesiee e 15

Update the entire SOUICE COAE tIBEc..eerureruerriieriierieeteeteesiteste et esteesitessteebeesseesieesareeseenaeens 15

Update a single file OF QITECIOTY ...ecvteiiiriiieieeiieiteeieete ettt sttt ettt e 16

CTOSS COMPIIING....eeutteniieiiie ittt ettt et sht e st e bt e bt e s bt e st e e bt e bt e sateeabesabeebeesatesatesnbeenseenaeesas 17
Obtaining binuUtils aNd ZCC SOUTCEeevuieriiiriiieiieiteite ettt ettt ettt e st e beesbeesaees 18

Obtaining Cygwin Headers and LibS...........cocuiiiiiiiiiiiiiiiieiiceeeeeetete ettt 18

Building binuUtils @nd ZCCcevuieruiiriiiiieiteite ettt sttt 20

Creating Links for binutils and @CC ...c.eevieriiiiiiiiiiiiiiiieeeeceeetet ettt 22

BUilding CyZWIN/X . .cooiiiiiiiitetee ettt ettt et ettt sttt e s bt e sat e st e bt e s bt e sateeabeebeenae 22

Packaging a Cygwin/X DIStrIDULIONcc.ceviiiiiiiiiiiieeieeteettesiteete ettt ettt st sbae s e e ebees 24

3. Documentation 25
OVETVIEW ...ttt ettt e et e e e e et e e e ete e e e teeeeateeeeaeeeeeaeeeeeaeeeenteseeaseeeeaseeeesseseesaeeanseeeenseseenseseassseeesseeeasseeensens 25
ODbtaining the SOUICE COUEoouieiiiiieiieiiet ettt ettt sttt et bttt e a e te s bt et e s beebeentesteeaeenaesaeeneens 25
Setting Up a DocBook Build ENVIrONmMENtccceiiiiiiiinieiiniieierie ettt s 25
Building the DOCUMENTALIONeoutiiiriieieiiitieieiteettete ettt ettt st bees et s bt et esbe et e besbeententeeaeenees 25
Packaging a Documentation DiStribULION...........coieiiririiniiieenieeec ettt 26

4. Web Site Maintenance 27
Bibliography 28
Glossary 29
A. GNU Free Documentation License 33
0. PREAMBLE ..ottt e ettt e et e e e tb e e e tb e e e baeesebae e sbesesseeesssaaessseeassseesssaaessaennssessnses 33

1. APPLICABILITY AND DEFINITIONSooiotiieit ettt te et ettt vee e e e saveeeaveesesaeessreaessseeennneas 33

2. VERBATIM COPYINGccttiiiiiieiieeciteeite ettt eeiteesvee et eeetveestaeesstesesssaeasssaaassseaassseessssessssessnssesssses 34

3. COPYING IN QUANTITY .ettieiiiieeiiieeite ettt e ettt eeieeestte e vt eestvaesaaeeestaeesssaeesssaaessseeanssesssssesssseessssesesses 34

4. MODIFICATIONS ...ttt ettt ettt et e este e et e e etbeessaeessseeesssaesssseeassseesssasassseeassseesssseessseesnssesasses 34

iii

5. COMBINING DOCUMENTSooiiiiiiiiiiiiiiientecere ettt s 36

6. COLLECTIONS OF DOCUMENTS ..ottt sttt sttt ettt s 36
7. AGGREGATION WITH INDEPENDENT WORKSccoooiiiiiiiiiieineneneeeeeeseseseeeeeesiesie e 36
8. TRANSLATION ...ttt ettt et et b bt sttt b et sh et b et e st be b b et et eseebeaben 36
9. TERMINATION ..ottt ettt ettt b e sttt b e bt bttt be bbbt et e bt eb e b et et eseebeebes 37
10. FUTURE REVISIONS OF THIS LICENSEc.coiitiiiiiiiininereteeeieeesesteteeeiesie et 37
How to use this License for your dOCUMENESeerueerieriirieniieieenteeie ettt sttt ettt ebeesaee e 37

v

Chapter 1. Overview

The Cygwin/X project can use your help! We will do everything we can to make experienced contributers
productive as soon as possible. We also want to make it as easy as possible for new contributers to make
Cygwin/X their first open source project.

Cygwin/X is part of the vast number of open source/free software programs that provide compatibility with
closed source/commercial software products. Cygwin/X enables the coexistence of closed software and open
software during the period of transition from an almost completely closed software market to an almost
completely open software market.

Join in the excitement of opening your Windows machine to the X Window System.

We need programmers, documentation writers, and website maintainers.

Chapter 2. Programming

Overview

This chapter provides a consolidated overview of all of the information needed to begin making source code
contributions to Cygwin/X. Creating a source code contribution for Cygwin/X requires an amazingly small
amount of information; however, prior to this document that tiny amount of information was difficult to obtain,
as it was scattered across several documents and source code files. New programmers with no open source
project experience, as well as programming gurus, will be able to make source code contributions to Cygwin/X
after reading this chapter. Programming gurus are great; our intention is to create more of them.

Downloading the X Window System source code tree can take anywhere from 10 minutes to 10 hours,
depending upon the speed of your network connection. If you have an active network connection at your disposal
you may want to skip ahead to the Section called Obtaining the Source Code and start downloading the source
code tree now. You will find it advantageous to have a source code tree as you read the other sections.

Source Code Tree Layout

Descriptions of Important xc Directories and Subdirectories
e config

- cf contains generic and platform specific imake configuration settings, build rules, and other macros.
Cygwin/X specific settings, build rules, and shared library template are contained in cygwin.cf,
cygwin.rules, and cygwin.tmpl, respectively. Settings in cygwin.cf can be overridden for a single
build host by creating a file called host . def that defines any host specific settings. xorgsite.def may be
used as a template for host .def; simply copy xorgsite.def to host.def, then edit and/or uncomment
any settings that you wish to override.

+ imake contains source code for the imake utility that is used to combine the configuration files in cf with
the Imakefile in a given directory to produce a Makefile that will work correctly for a given platform; in
our case, that platform is Cygwin. Any build problems with imake will stop compilation of the X Window
System CVS tree, as there will not be any Makefile’s to operate on. This directory will therefore be of
interest only when imake fails to build.

- makedepend contains source code for the makedepend utility that scans the included files in the .c and .h
used by a project to determine which files the build targets depend upon. This directory will only be of
interest when makedepend fails to build.

« util contains a few general utilities, such as Indir.

« doc

+ hardcopy contains precompiled PostScript documentation for various components of the X Window
System. Cygwin/X-specific documentation is not contained in this directory. This directory is of little
interest to Cygwin/X programmers.

« specs contains the sources to build the documents in hardcopy. This directory is of little interest to
Cygwin/X programmers.

+ util contains a few awk scripts for use in building documentation. This directory is of little interest to
Cygwin/X programmers.

Chapter 2. Programming

fonts contains font definition files used to compile fonts. This directory is of little interest to Cygwin/X
programmers.

include contains various X Window System headers that are not generally specific to any one client or
library (i.e. X.h, Xproto.h, and keysymdef . h).

1ib contains both X client and X Server libraries. Cygwin/X does not generally call any functions in these
libraries directly; however, we do have to link to several of these libraries to get our X Server to build. These
libraries are maintained by various developers from the X Window System project and there are occasional
synchronizations with The Open Group (http://www.opengroup.org/)’s X.org (http://www.x.org/). Cygwin/X
programmers occasionally need to fix Cygwin-related build errors that occur in these libraries.

nls contains locale definition files. This directory is of little interest to Cygwin/X programmers.
programs
« Xserver contains the heart of Cygwin/X, namely, the Cygwin/X X Server.

- cfb* contains deprecated color framebuffer drawing procedures that are not compatible with the Shadow
drawing system that Cygwin/X depends upon. This directory is of no interest to Cygwin/X programmers.

+ dix contains [drawing] device independent X routines. main.c contains the main entry-point function
for the Cygwin/X X Server. The X Server startup procedure can be followed by examining main.

- fb contains the modern framebuffer drawing procedures used by Cygwin/X. This directory is maintained
by Keith Packard and is only of interest to Cygwin/X programmers when it fails to build.

- hw contains [drawing] hardware dependent functions.

+ vEb contains the Virtual Framebuffer X Server. The vfb server draws to a system memory framebuffer
with the primary purpose of allowing X clients to run on a machine that does not have display
hardware.

« xfree86 contains source code for the X Window System servers that run on various operating systems
that generally have low-level access to the graphics hardware. Cygwin/X does not have low-level
access to the graphics hardware, thus Cygwin/X is not able to utilize the X Window System server.

. xnest contains source code for the Nested X Server which runs inside of another X Server. xnest is
not generally of interest to Cygwin/X programmers.

+ xwin contains the source code for the Cygwin/X X Server. This is the primary directory that
Cygwin/X programmers are interested in.

« include contains header files specific to the X Server program, such as graphics context structures. This
directory is useful to Cygwin/X programmers when they need to lookup the name or data type of
members of various X Server structures.

+ mi contains machine independent drawing routines. These drawing routines are used by the Cygwin/X
Native GDI X Server engine. In turn, the machine independent routines depend in winGetSpans,
winFillSpans, and winSetSpans, which are implemented in the Native GDI engine.

- miext contains various machine independent X extensions.

+ layer contains source code for the layer extension. This extension is supported by Cygwin/X,
however, this directory will be of interest only when layer fails to build.

- shadow contains source code for the shadow extension that the Cygwin/X X Server depends upon.
This directory is of primary importance to Cygwin/X, but it is maintained by other programmers and is
only of direct interest to Cygwin/X programmers when it fails to build. The shadow extension does
three things:

Chapter 2. Programming

1. Allows the fb graphics routines to draw to an offscreen framebuffer.
2. Keeps track of the regions of the offscreen framebuffer that have been drawn on.

3. Calls one of Cygwin/X’s engine dependent ShadowUpdate () functions to transfer the updated
regions of the offscreen framebuffer to the screen.

+ os contains operating system dependent X Server functions. However, the functions in the os have been
written in such a way that they are actually compatible with most UNIX-style operating systems, include
Cygwin.

+ util contains a few utilities for programmers, such as a memory leak counter. Cygwin/X has never used these
utilities, thus this directory is of little interest to Cygwin/X programmers.

Cygwin/X X Server Architecture

Cygwin/X’s X Server architecture was heavily inspired by Angebranndt94, the Definition of the Porting Layer
for the X v11 Sample Server.

Server Privates

X Servers use various structures to pass information around to functions. Some of those structures are
colormaps, graphics contexts (GCs), pixmaps, and screens. The X protocol defines the contents of each of these
structures, however, the X Server implementation and various X Server libraries (M1, FB, Shadow, etc.) may
require additional information to be associated with these internal structures. For example, the Cygwin/X X
Server must associate a Windows window handle (hwnd) with each X Server screen that is open.

Privates are the mechanism provided by the X protocol for associating additional information with internal X
Server structures. Privates originally consisted of a single pointer member contained in each structure, usually
named devPrivate or devPriv. This original specification only allowed one of the X Server layers (mi, fb,
shadow, etc.) to have privates associated with an internal structure. Privates have since been revised.

The current privates implementation requires that each X Server layer call a function on startup to indicate that
that layer will require privates and to obtain an index into the array of privates that that layer’s privates will be

stored at. Modern privates are generally stored in an array of type DevUnion pointed to by a structure member
named devPrivates; DevUnion is defined in xc/programs/Xserver/include/miscstruct.h. There

are two different memory allocation schemes for devPrivates.

Memory for privates structures can either be preallocated or allocated upon use. Preallocation, the preferred
method for GCs, pixmaps, and windows, requires that the size of the privates memory needed be specified
during X Server initialization. Preallocation allows the DIX layer to allocate all memory needed for a given
internal structure, including all privates memory, as a single contiguous block of memory; this greatly reduces
memory fragmentation. Allocation upon use, used by screens, requires the DDX structure creation function to
allocate memory for the privates; winScreenInit calling winAllocatePrivates, which allocates screen
privates memory directly, is an example of this. Allocation upon use can optionally and non-optimally be used
by GCs, pixmaps, and windows.

Chapter 2. Programming

Macros

Three macros are provided for each class of privates that make setting up and using the privates easier. The
macros for screen privates are examined as an example.

winPrivScreenPtr winGetScreenPriv (ScreenPtr pScreen);

winGetScreenPriv takes a non-NULL pointer to a screen, a ScreenPtr, and returns the pointer stored in the
DDX privates for that screen. Passing a NULL or invalid ScreenPtr to winGetScreenPriv will cause an access
violation, crashing the Cygwin/X X Server.

void winSetScreenPriv (ScreenPtr pScreen, void * pvPrivates);

winSetScreenPriv takes a non-NULL pointer to a screen, a ScreenPtr, and sets the DDX privates pointer to
the value of the pvPrivates parameter. Passing a NULL or invalid ScreenPtr to winSetScreenPriv will
cause an access violation, crashing the Cygwin/X X Server.

void winScreenPriv (ScreenPtr pScreen);

winScreenPriv takes a non-NULL pointer to a screen, a ScreenPtr, and declares a local variable in the calling
function named pScreenPriv. winScreenPriv may only be called at the top of a C function within the
variable declaration block; calling the function elsewhere will break the ANSI C rule that all variables must be
declared at the top of a scope block. Passing a NULL or invalid ScreenPtr to winScreenPriv will cause an
access violation, crashing the Cygwin/X X Server.

Engine System

The Cygwin/X X Server uses several methods of drawing graphics on the display device; each of these different
drawing methods is referred to as an engine. Each of the engines can be classified as either a Shadow FB engine,
a Native GDI engine, or as a Primary FB engine. It should be noted that the Primary FB engine is deprecated and
is discussed here only for completeness. The engines are discussed in the following sections, in order of
importance.

Shadow FB Engines

The Shadow FB engines use Keith Packard’s FB drawing procedures wrapped with his Shadow layer that allows
drawing to an offscreen framebuffer with periodic updates of the primary framebuffer.

Native GDI Engine

The Native GDI engine will eventually translate individual X graphics calls into their GDI equivalent. Some X
graphics calls do not translate directly to a GDI call so they may be passed through the MI layer to change them
into a serious of lower level calls that are supported. Currently, the Native GDI engine passes all X graphics calls
through the MI layer to convert them into three functions: FillSpans, GetSpans, and SetSpans. The

Chapter 2. Programming

functionality of those three functions, as of 2001-10-28, is limited to the functionality needed to draw the
familiar X background pattern upon X Server startup.

Primary FB Engine

The Primary FB engine is deprecated. Primary FB works in the same manner that the original Cygwin/X X
Server worked, namely, it uses IDirectDrawSurface_Lock to obtain a pointer to the primary framebuffer
memory at server startup. This memory pointer is held until the X Server shuts down. This technique does not
work on all versions of Windows.

Locking the primary framebuffer on Windows 95/98/Me causes the Winl6Mutex to be obtained by the program
that locks the primary framebuffer; the Winl6Mutex is not released until the primary framebuffer is unlocked.
The Winl6Mutex is a semaphore introduced in Windows 95 that prevents 16 bit Windows code from being
reentered by different threads or processes. For compatibility reasons, all GDI operations in Windows 95/98/Me
are written in 16 bit code, thus requiring that the Win16Mutex be obtained before performing those operations.
All of this leads to the following situation on Windows 95/98/Me:

1. The primary framebuffer is locked, causing the Cygwin/X X Server to hold the Win16Mutex.
. Windows switches the Cygwin/X X Server out of the current process slot; another process is switched in.

. The newly selected process makes a GDI function call.

S W N

. The GDI function call must wait for the Winl6Mutex to be released, but the Winl16Mutex cannot be
released until the Cygwin/X X Server releases the Winl6Mutex. However, the Cygwin/X X Server will not
release the Winl6Mutex until it exits. The end result is that the Winl6Mutex has been deadlocked and the
Windows machine is frozen with no way to recover.

Windows NT/2000/XP do not contain any 16 bit code, so the Winl6Mutex is not an issue; thus, the Primary FB
engine works fine on those operating systems. However, drawing directly to the primary framebuffer suffers
performance problems. For example, on some systems writing to the primary framebuffer requires doing
memory reads and writes across the PCI bus which is only 32 bits wide and features a clock speed of 33 MHz, as
opposed to accessing system memory, which is attached to a 64 bit wide bus that runs at between 100 and 266
(effective) MHz. Furthermore, accessing the primary framebuffer memory requires several synchronization steps
that take many clock cycles to complete. The end result is that the Primary FB engine is several times slower
than the Shadow FB engines.

The Primary FB engine also has several unique issues that are difficult to program around. Development of the
Primary FB engine has ceased, due to the difficulty of maintaining it, coupled with the fact that Primary FB does
not run on Windows 95/98/Me and with the poor performance of Primary FB. The Primary FB source code has
been left in place so that future programmers can enable it and see the poor performance of the engine for
themselves.

User Input

User input is processed using the M1 layer’s user input system. Any queued Win32 user input messages, as well
as other Win32 messages, are handled when hw/xwin/winwakeup.c’s winWakeupHandler function is called
by the OS layer os/WaitFor.c’s WaitForSomething function and when the DIX layer dix/dispatch.c’s
Dispatch function calls hw/xwin/InitInput.c’s ProcessInputEvents function. Each Win32 user input
message typically queues an input event, or several input events, using the MI layer’s mi/mieqg.c’s
miegEnqueue function. Enqueued MI input events are processed in ProcessInputEvents by calling
mi/mieq.c’s miegProcessInputEvents; the cursor position is updated on the screen by calling

mipointer.c’SmiPointerUpdate.

Chapter 2. Programming

Keyboard

Win32 keyboard messages are processed in winwndproc.c’s winWindowProc. The messages processed are:

+ WM_SYSKEYDOWN
+ WM_KEYDOWN

- WM_SYSKEYUP

- WM_KEYUP

The WM_SYSKEY* messages are generated when the user presses a key while holding down the Alt key or
when the user presses a key after pressing and releasing the F10 key. Processing for WM_SYSKEYDOWN and
WM_KEYDOWN (respectively WM_SYSKEYUP, WM_KEYUP) messages are identical because the X Server
does not distinguish between a normal key press and a key press when the Alt key is down.

Win32 uses virtual key codes to identify which key is being pressed or released. Virtual key codes follow the
idea that the same virtual key code will be sent for keys with the same label printed on them. For example, the
left and right Ctrl keys both generate the VK_CONTROL virtual key code. Virtual key codes are accompanied
by other state information, such as the extended flag, that distinguishes between the multiple keys with the same
label. For example, the left Ctrl key does not have the extended flag asserted, while the right Ctrl key does have
the extended flag asserted. However, virtual key codes are not the way that key presses have traditionally been
identified on personal computers and in the X Protocol.

Personal computers and the X Protocol use scan codes to identify which key is being pressed. Each key on the
keyboard generates a specified number when that key is pressed or released; this number is called the scan code.
Scan codes are always distinct for distinct keys. For example, the left and right Ctrl keys generate distinct scan
codes, even though their functionality is the same. Scan codes do not have additional state information, as the
multiple keys with the same label will each generate a unique scan code. There is some debate as to which of
virtual key codes or scan codes is the better system.

The X Protocol expects that keyboard input will be based on a scan code system. There are two methods of
sending a scan codes from a virtual key code message. The first method is to create a static table that links the
normal and extended state of each virtual key code to a scan code. This method seems valid, but the method does
not work reliably for users with non-U.S. keyboard layouts. The second method simply pulls the scan code out
of the 1Param of the keyboard messages; this method works reliably for non-U.S. keyboard layouts. However,
there are further concerns for non-U.S. keyboard layouts.

Non-U.S. keyboard layouts typically use the right Alt key as a sort of shift key to access an additional row of
symbols from the ¢, 1, 2, ..., 0 keys, as well as accented forms of standard alphabetic characters, such as 4, 4, 4, 4
and additional alphabetic characters, such as 3. Non-U.S. keyboards typically label the right Alt key as AltGr or
AltLang; the Gr is short for “grave”, which is the name of one of the accent symbols. The X Protocol and Win32
methods of handling the AltGr key are not directly compatible with one another.

The X Protocol handles AltGr presses and releases in much the same way as any other key press and release.
Win32, however, generates a fake Ctrl press and release for each AItGr press and release. The X Protocol does
not expect this fake Ctrl press and release, so care must be taken to discard the fake Ctrl press and release. Fake
Ctrl presses and releases are detected and discarded by passing each keyboard message to winkeybd.c’s
winIsFakeCtrl_L function. winIsFakeCtrl_L detects the fake key presses and releases by comparing the
timestamps of the AltGr message with the timestamp of any preceding or trailing Ctrl message. Two real key
events will never have the same timestamp, but the fake key events have the same timestamp as the AltGr
messages, so the fake messages can be easily identified.

Special keyboard considerations must be handled the Cygwin/X X Server losses or gains the keyboard focus. For
example, the user can switch out of Cygwin/X, toggle the Num Lock key, then switch back into Cygwin/X; in
this case Cygwin/X would not have received the Num Lock toggle message, so it will continue to function as if
Num Lock was in its previous state. Thus, the state of any mode keys such as Num Lock, Caps Lock, Scroll

Chapter 2. Programming

Lock, and Kana Lock must be stored upon loss of keyboard focus; the stored state of each mode key must then
be compared to that key’s current state, toggling the key if its state has changed.

Mouse

Win32 mouse messages are processed in winwndproc.c’s winWindowProc. The messages processed are:

« WM_MOUSEMOVE

« WM_NCMOUSEMOVE
+ WM_LBUTTON*

+ WM_MBUTTON*

« WM_RBUTTON*

+ WM_MOUSEWHEEL

Handling mouse motion is relatively straight forward, with the special consideration that the Windows mouse
cursor must be hidden when the mouse is moving over the client area of a Cygwin/X window; the Windows
mouse cursor must be redisplayed when the mouse is moving over the non-client area of a Cygwin/X window.
Win32 sends the absolute coordinates of the mouse, so we call miPointerAbsoluteCursor to change the
position of the mouse.

Three-button mouse emulation is supported for users that do not have a three button mouse. When three-button
mouse emulation is disabled, mouse button presses and releases are handled trivially in winmouse.c’s
winMouseButtonsHandle by simply passing the event to miegEnqueue. Three-button mouse emulation is
quite complicated.

Three-button mouse emulation is handled by starting a timer when the left or right mouse buttons are pressed;
the button event is sent as a left or right mouse button event if the other button is not pressed before the timer
expires. The button event is sent as an emulated middle button event if the other mouse button is pressed before
the timer runs out.

The mouse wheel is handled in winmouse.c’s winMouseWheel by generating sequences of button 4 and button
5 presses and releases corresponding to how much the mouse wheel has moved. Win32 uses variable resolution
for the mouse wheel and passes the mouse wheel motion as a delta from the wheel’s previous position. The
number of button clicks to send is determined by dividing the wheel delta by the distance that is considered by
Win32 to be one unit of motion for the mouse wheel; any remainder of the wheel delta must be preserved and
added to the next mouse wheel message.

Obtaining the Source Code

Cross Compiling: Obtaining the source code when cross compiling X Window System is nearly identical to
the process described below. The only divergence from the following instructions is that you will be using a
bash shell on your cross compiling host, rather than on your native Cygwin host.

Cygwin/X source code is contained in, and distributed with, the X Window System source code tree. Read-only
CVS access to the X Window System source tree (http://freedesktop.org/Software/xorg) is also available.

Wait for these instructions to be updated some time after 2004-04-03.

Chapter 2. Programming

Native Compiling

Compiling the Source Code

Compiling Cygwin/X doesn’t have to be hard, although the X Window System source code tree contains over
250 MiB of data. There are a few simple techniques that make building the source code, keeping the source code
up to date, and keeping the source code organized much easier.

Compiling Overview

Compiling the X Window System source code tree is a lot easier when you keep your builds in directories
separate from the source code directory. Keeping the source code and builds in separate directories, using the
Indir utility, allows you to have many builds for different configurations, allows you to easily delete a build, and
keeps the source code tree clean and manageable.

Required Packages for Compiling

Many developer libraries and developer tools are required to build Cygwin/X. Several packages are required in
addition to the default packages installed by the Cygwin installer. Following is a list of additional packages that
are required to compile Cygwin/X natively in Cygwin. Note that some of these packages are meta packages that
will automatically cause several other packages to be selected for installation; do not unselect any of these
automatically selected packages.

« binutils

+ bison

» byacc

« bzip2

s CVS

« diffutils

+ expat

- fileutils

+ findutils

+ flex

- gawk

. gcc

+ libfontconfig-devel
« libfreetype2-devel
« libncurses-devel
+ make

+ patch

+ pcre

+ pcre-devel

+ perl

Chapter 2. Programming

- sed
e tar
« termcap
+ terminfo

« zIib

Building and Installing Indir

The Indir utility allows you to keep your build directories separate from your source directory; Indir works just
like the standard In command on UNIX, but Indir creates links recursively for all files and directories in the
specified directory. The Indir utility is included with the X Window System source code tree and you can build
Indir seperately before you build the whole source code tree. Follow the simple instructions below to build and
install the utility:

1. Launch a Cygwin bash prompt. You should see a screen similar to the following:

Username@CygwinHost ~

$

2. Change the current directory to your X Window System development directory:
Username@CygwinHost ~

$ cd x-devel

Username@CygwinHost ~/x-devel

$

3. Change the current directory to config/util/ in the root of the X Window System source code tree, xc/:
Username@CygwinHost ~/x-devel

$ cd xc/config/util

Username@CygwinHost ~/x-devel/xc/config/util

$

4. Build Indir:

Username@CygwinHost ~/x-devel/xc/config/util
$ make —-f Makefile.ini CC=gcc CDEBUGFLAGS=-02 lndir

Username@CygwinHost ~/x-devel/xc/config/util

$

5. Move 1ndir.exe to /bin:

Username@CygwinHost ~/x-devel/xc/config/util
$ mv lndir.exe /bin

Username@CygwinHost ~/x-devel/xc/config/util

$

10

Chapter 2. Programming

6. Verify that Indir is working:

Username@CygwinHost ~/x-devel/xc/config/util
S 1ndir
usage: 1lndir [-silent] [-ignorelinks] fromdir [todir]

Username@CygwinHost ~/x-devel/xc/config/util

$

7. The Indir utility is now installed.

Standard Build

Follow these steps to create a standard, non-debug, build:

1. Change the current directory to your X Window System development directory:
Username@CygwinHost ~

$ cd x-devel

Username@CygwinHost ~/x-devel

$

2. Create a directory to house your builds, ~/x-devel/build is recommended:
Username@CygwinHost ~/x—-devel

$ mkdir build

Username@CygwinHost ~/x-devel

$

3. Change the current directory to your build directory:
Username@CygwinHost ~/x-devel

$ cd build

Username@CygwinHost ~/x-devel/build
$

4. Create a directory for your standard build, std is recommended:
Username@CygwinHost ~/x-devel/build
$ mkdir std

Username@CygwinHost ~/x-devel/build
$

5. Change the current directory to your standard build directory:

Username@CygwinHost ~/x-devel/build
$ cd std

Username@CygwinHost ~/x-devel/build/std
$

11

Chapter 2. Programming

6. Create symlinks to your source tree, using Indir, in your standard build directory:

Note: As of 2001-09-19, creating symlinks to the source tree creates 11,678 files in 1,524 folders, which
is only 2.31 MiB of data, but requires 45.6 MiB of storage space on a file system using 4 KiB allocation
units.

Username@CygwinHost ~/x-devel/build/std
$ lndir ../../xc

../../xc/config:

./../../xc/config/cf:

Username@CygwinHost ~/x-devel/build/std
$

Alternatively, you can redirect the output of Indir to /dev/null, which greatly speeds up the process of
creating symlinks:

Username@CygwinHost ~/x-devel/build/std
$ 1lndir ../../xc > /dev/null

Username@CygwinHost ~/x-devel/build/std
$

7. Run a standard build of the entire tree, which takes between 30 minutes and 5 hours, saving the output of the
build commands to Wor1d. log:

Note: As of 2001-09-19, a standard build of the entire tree requires 234 MiB of storage space on a file
system using 4 KiB allocation units; that is in addition to the 45.6 MiB of previously generated symlinks.

As a benchmark, a standard build runs for 30 minutes on a machine with a 1.2 GHz Atlhon, 256 MiB
DDR RAM, and a 7200 RPM ATA/100 HD.

Username@CygwinHost ~/x-devel/build/std
$ make World > World.log 2>&1

Username@CygwinHost ~/x-devel/build/std
$

8. Standard build is now complete.

Debug Build

Follow these steps to create a build with debugging information:
1. Change the current directory to your X Window System development directory:

Username@CygwinHost ~
$ cd x-devel

12

Chapter 2. Programming

Username@CygwinHost ~/x-devel

$

. If you have not already done so, create a directory to house your builds, ~/x-devel/build is
recommended:

Username@CygwinHost ~/x-devel

$ mkdir build

Username@CygwinHost ~/x-devel

$

. Change the current directory to your build directory:
Username@CygwinHost ~/x-devel

$ cd build

Username@CygwinHost ~/x—-devel/build
$

. Create a directory for your debug build, debug is recommended:
Username@CygwinHost ~/x-devel/build
$ mkdir debug

Username@CygwinHost ~/x—-devel/build
$

. Change the current directory to your debug build directory:

Username@CygwinHost ~/x-devel/build
$ cd debug

Username@CygwinHost ~/x-devel/build/debug
$

. Create links to your source tree, using Indir, in your debug build directory:

Note: As of 2001-09-19, creating symlinks to the source tree creates 11,678 files in 1,524 folders, which
is only 2.31 MiB of data, but requires 45.6 MiB of storage space on a file system using 4 KiB allocation
units.

Username@CygwinHost ~/x-devel/build/debug
$ 1ndir ../../xc
../../xc/config:

./../../xc/config/cf:

Username@CygwinHost ~/x-devel/build/debug
$

13

Chapter 2. Programming

Alternatively, you can redirect the output of Indir to /dev/null, which greatly speeds up the process of
creating symlinks:

Username@CygwinHost ~/x-devel/build/debug
$ 1Indir ../../xc > /dev/null

Username@CygwinHost ~/x-devel/build/debug
$

7. Run a debug build of the entire tree, which takes between 30 minutes and 5 hours, saving the output of the
build commands to World. log:

Note: As of 2001-06-12, a debug build of the entire tree requires 566.5 MiB of storage space on a file
system using 4 KiB allocation units; that is in addition to the 45.6 MiB of previously generated symlinks.

As a benchmark, a debug build runs for 71 minutes on a machine with a 1.2 GHz Atlhon, 256 MiB DDR
RAM, and a 7200 RPM ATA/100 HD. You may have noticed that the standard build time and the debug
build time are identical.

Username@CygwinHost ~/x-devel/build/debug
$./config/util/makeg.sh World > World.log 2>&1

Username@CygwinHost ~/x-devel/build/debug
$

8. Debug build is now complete.

Installing a local build

Installing a local build enables you to verify that a build of the entire source tree is operational. It is wise to
verify the operation of full builds of the source tree from time to time, as full builds will occasionally be broken
by changes that other developers are making to the X Window System source code tree.

Installing a local build on top of an existing build is not a good idea, as this can mask problems that occurred
during the build process, or it can cause problems that are unrelated to the build process; either situation is
undesirable. It is generally a good idea to move your old installation out of the way before installing a local build,
and these instructions will assume that you desire to do so. Follow the instructions below to install a local build:

1. Move the /etc/x11 directory to /etc/X11_build-prefix_date_time

Username@CygwinHost ~
$ mv /etc/X1l /etc/X1l_build-prefix_date_time

Username@CygwinHost ~

$

2. Move the /usr/x11R6 directory to /usr/X11R6_build-prefix_date_time:

Username@CygwinHost ~
$ mv /usr/X11R6 /usr/X11R6_build-prefix_date_time

Username@CygwinHost ~

14

Chapter 2. Programming

3. Change the current directory to your desired X Window System build directory:

Username@CygwinHost ~
$ cd ~/x-devel/build/build-prefix

Username@CygwinHost ~/x-devel/build/build-prefix
$

4. Make the install target, which installs binaries, fonts, libraries, and configuration files; in short,
install installs everything except the man pages:

Note: As of 2001-06-12, the install target copies 5,074 files in 83 folders into /usr/x11R6, requiring
89.2 MiB of storage space for a standard build or 177 MiB of storage space for a debug build, and 276
files in 39 folders into /etc/x11, requiring 2.57 MiB of storage space. All stated storage requirements
are for a file system using 4 KiB allocation units.

As a benchmark, install runs for 20 minutes on a machine with a 1.2 GHz Atlhon, 256 MiB DDR
RAM, and a 7200 RPM ATA/100 HD. Standard and debug installs both complete in the stated time.

Username@CygwinHost ~/x-devel/build/build-prefix
$ make install > install.log 2>&1

Username@CygwinHost ~/x-devel/build/build-prefix
$

5. Make the install .man target, which only installs the man pages:

Note: As of 2001-06-12, the install.man target copies 541 files in 3 folders into /usr/X11R6/man,
requiring 4.22 MiB of storage space, and 544 files in 1 folder into /usr/x11R6/1ib/X11/doc, requiring
4.76 MiB of storage space. All stated storage requirements are for a file system using 4 KiB allocation
units.

As a benchmark, install.man runs for 2 minutes on a machine with a 1.2 GHz Atlhon, 256 MiB DDR
RAM, and a 7200 RPM ATA/100 HD.

Username@CygwinHost ~/x-devel/build/build-prefix
$ make install.man > install.man.log 2>&1

Username@CygwinHost ~/x-devel/build/build-prefix
$

Keeping your source code tree updated

CVS makes keeping your source code tree up to date easy. You may update your entire source code tree at once,
or you can update individual directories or files, if you so choose.

15

Chapter 2. Programming

Update the entire source code tree

1. Change the current directory to your X Window System development directory:
Username@CygwinHost ~

$ cd x-devel

Username@CygwinHost ~/x-devel

$

2. Change the current directory to the root of the X Window System source code tree, xc/:
Username@CygwinHost ~/x-devel

$ cd xc

Username@CygwinHost ~/x-devel/xc

$

3. To update your entire X Window System source code tree, run the following command:

Tip: The —zn parameter specifies the compression level to use, from 1 to 9, with 9 being maximum
compression.

The -d parameter instructs cvs to rebuild the directory list, which causes new directories in the source
code tree to be downloaded (new directories are skipped if you do not specify —d).

Username@CygwinHost ~/x-devel/xc
$ cvs -z4 update -d > cvs—-update.log 2>&1

Username@CygwinHost ~/x-devel/xc

$

4. Search cvs-update. log for any lines containing conflict. Examine each line that contains conflict;
resolve those lines that are true conflicts. grep will not display any information if no line in cvs-update.log
contains conflict.

Username@CygwinHost ~/x-devel/xc
$ grep conflict cvs-update.log

Username@CygwinHost ~/x-devel/xc

$

Update a single file or directory

1. Change the current directory to your X Window System development directory:

Username@CygwinHost ~
$ cd x-devel

Username@CygwinHost ~/x-devel

$

16

Chapter 2. Programming

2. Change the current directory to the directory that contains the file you wish to update, or change the current
directory to the directory that you wish to update:

Username@CygwinHost ~/x-devel

$ cd xc/directory_to_update

Username@CygwinHost ~/x-devel/xc/directory to_update

$

3. To update a single file, or a set of specified files, run the following command:

Tip: The —zn parameter specifies the compression level to use, from 1 to 9, with 9 being maximum
compression.

Username@CygwinHost ~/x-devel/xc/directory to_update
$ cvs -z4 update filename_1 [filename_2 ...]

Username@CygwinHost ~/x-devel/xc/directory_to_update

$

4. To update a single directory, and its subdirectories, run the following command:

Note: The —zn parameter specifies the compression level to use, from 1 to 9, with 9 being maximum
compression.

The -d parameter instructs cvs to rebuild the directory list, which causes new directories in the source
code tree to be downloaded (new directories are skipped if you do not specify -d).

Username@CygwinHost ~/x-devel/xc/directory to_update
$ cvs -z4 update -d

Username@CygwinHost ~/x-devel/xc/directory_to_update

$

Cross Compiling

Cross compiling is the act of the building source code on one system, the build host, into executables or libraries
to be run on a different host, the native host. The build host and the native host may differ in operating system
and/or processor type. Cross compiling is done for several reasons:

+ The native host is grossly under powered, such as a handheld computer.

 The user happens to have greatly more compiling power available on a platform other than the native host. For
example, the user may have access to a 32 processor machine while their desktop machine may only be a
uni-processor machine.

17

Chapter 2. Programming

Cross compiling is much trickier than building on the native host. There are a whole new class of problems that
can happen when cross compiling that are simply not an issue when building on Cygwin. You should be familiar
with building Cygwin/X on Cygwin, as described in the Section called Native Compiling, before attempting to
cross compile Cygwin/X.

Obtaining binutils and gcc Source

binutils and gcc source code releases that are known to compile on Cygwin and distributed by the Cygwin
project. Therefore, it is highly recommended that you obtain the binutils and gcc sources from the Cygwin
mirror network (http://cygwin.com/mirrors.html).

Follow these steps to download Cygwin/X binaries:

1. Create a directory to store the binutils and gcc sources in, such as /home/my_login/cygwin/src/
2. Visit the Cygwin mirrors page (http://cygwin.com/mirrors.html) to find your closest mirror

3. The ftp url for your mirror site should take you to the cygwin/ directory on the mirror

4. Change current ftp directory to cygwin/release/.

5. Download the following files from cygwin/release/, saving them to /home/my_login/cygwin/src/
The compressed file size appears after each file in the list below.

Downloading with a Web Browser: Some web browsers automatically decompress saved files when you
use the left mouse button to follow the link to a file; bunzip2 will report, “Data integrity error when
decompressing.”, when attempting to decompress a file that has been decompressed by your web
browser. Prevent your files from being automatically decompressed by clicking the right mouse button
on a file link and choosing a command such as Save Target As... or Save Link As... from the context
sensitive menu. Better yet, download your files with a stand alone ftp client.

¢ binutils/binutils-20030901-1-src.tar.bz2 (10.5 MiB; required, necessary to build gcc and
Cygwin/X)

* gcc/gec-3.3.1-1-src.tar.bz2 (21.9 MiB; required, necessary to build Cygwin/X)

Obtaining Cygwin Headers and Libs

The simplest method of building a cross compiler for Cygwin requires that you have the Cygwin headers and
libraries available at the time of building the cross compiler. Cygwin headers and libraries are installed when
Cygwin is installed, so the headers and libraries can be obtained from an existing Cygwin installation.

Don’t simply copy the headers and libraries: Some of the headers and libraries are symbolic links to other
headers or libraries. Copying these files using a program that is not aware of Cygwin’s symlink emulation will
result in some of the header and library files being broken. The method described below will preserve the
symbolic links used by the header and library files.

18

Chapter 2. Programming

1. Launch your Cygwin environment, using either the icon on your Desktop, the icon in your Start Menu, or by
running cygwin.bat from your Cygwin directory (e.g. c: \cygwin); you should see a window like the
following:

Username@CygwinHost ~

$

2. Change the current directory to Cygwin root directory:
Username@CygwinHost ~

$ cd /

Username@CygwinHost /

$

3. Create an archive of the contents of the /1ib directory:
Username@CygwinHost /

$ tar czf cygwin-lib.tgz 1lib/

Username@CygwinHost /

$

4. Change the current directory to the usr directory in your Cygwin root directory:
Username@CygwinHost /

$ cd /usr

Username@CygwinHost /usr

$

5. Create an archive of the contents of the /usr/include directory:
Username@CygwinHost /usr

$ tar czf cygwin-include.tgz include/

Username@CygwinHost /usr

$

6. Transfer cygwin-lib.tgz and cygwin-include.tgz to your build host using any method that you have available
(e.g. ftp, samba, diskette, etc.). Save the files in the /home/my_login/cygwin/i686-pc—cygwin/
directory.

7. Open a shell on your cross compiling build host; you should see a window like the following:

[harold@CrossHost harold]$

8. Change the current directory to the /home/my_login/cygwin/i686-pc-cygwin/ directory in your
build host root directory:

[harold@CrossHost harold]$ cd /home/my_login/cygwin/i686-pc—-cygwin/

[harold@CrossHost /home/my_login/cygwin/i686-pc-cygwin/]$

19

Chapter 2. Programming

9. Extract the cygwin-lib.tgz and cygwin-include.tgz archives:

[harold@CrossHost /home/my_login/cygwin/i686-pc-cygwin/]1$ tar xzf cygwin-lib.tgz

[harold@CrossHost /home/my_login/cygwin/i686-pc-cygwin/]1$ tar xzf cygwin-include.tgz

10. Obtaining Cygwin headers and libs is now complete.

Building binutils and gcc

1. Open a shell on your cross compiling build host; you should see a window like the following:

[harold@CrossHost harold]$

2. Change the current directory to the /home/my_login/cygwin/src/ directory in your build host root
directory:

[harold@CrossHost harold]$ cd /home/my_login/cygwin/src/

[harold@CrossHost srcl$

3. Extract the binutils-20030901-1-src.tar.bz2 and gcc-3.3.1-1-src.tar.bz2 archives:

[harold@CrossHost src]$ bunzip2 binutils-20030901-1-src.tar.bz?2
[harold@CrossHost src]$ tar xf binutils-20030901-1-src.tar
[harold@CrossHost srcl$ bunzip2 gcc-3.3.1-1-src.tar.bz2

[harold@CrossHost src]$ tar xf gcc-3.3.1-1-src.tar

4. Change the current directory to the /home/my_login/cygwin/src/binutils-20030901-1 directory:
[harold@CrossHost srcl$ cd binutils-20030901-1

[harold@CrossHost binutils-20030901-1]$

5. Create a build directory and change the current directory to that directory:

[harold@CrossHost binutils-20030901-1]$ mkdir build
[harold@CrossHost binutils-20030901-1]$ cd build

[harold@CrossHost build]$

6. Configure binutils:

[harold@CrossHost build]$../configure
——prefix=/home/my_login/cygwin —--exec-prefix=/home/my_login/cygwin
—-—target=i1686-pc-cygwin —--host=i686-pc-linux > configure.log 2>&1

20

Chapter 2. Programming

[harold@CrossHost build]$

7. Build binutils:

[harold@CrossHost build]$ make all > all.log 2>&1

[harold@CrossHost build]$

8. Install binutils:

[harold@CrossHost build]$ make install > install.log 2>&1

[harold@CrossHost build]$

9. Modify the PATH environment variable to include the directories that the binutils executables were installed
in:

[harold@CrossHost build]$
PATH=$PATH: /home/my_login/cygwin/bin:/home/my_login/cygwin/i686-pc—cygwin/bin

[harold@CrossHost build]$

10. Change the current directory to the /home/my_login/cygwin/src/gcc-3.3.1-1 directory:
[harold@CrossHost build]$ cd ../../gcc-3.3.1-1

[harold@CrossHost gcc-3.3.1-11$

11. Create a build directory and change the current directory to that directory:

[harold@CrossHost gcc—-3.3.1-1]$ mkdir build
[harold@CrossHost gcc-3.3.1-1]$ cd build

[harold@CrossHost build]$

12. Configure gcc:

[harold@CrossHost build]$../configure
——prefix=/home/my_login/cygwin —--exec-prefix=/home/my_login/cygwin
—-—target=1686-pc-cygwin —--host=i686-pc-linux

—-enable-haifa > configure.log 2>&1

[harold@CrossHost build]$

13. Build gcc:

[harold@CrossHost build]$ make all > all.log 2>&l

[harold@CrossHost build]$

14. Install gcc:

21

Chapter 2. Programming
[harold@CrossHost build]$ make install > install.log 2>&1

[harold@CrossHost build]$

15. Building binutils and gcc is now complete.

Creating Links for binutils and gcc

Links to the executables in /home/my_login/cygwin/bin must be created in the
/home/my_login/cygwin/i686-pc-cygwin/bin directory; these are required for the build system to find
the build executables (e.g. gece, c¢pp, etc.). Each of the build executables in /home/my_login/cygwin/bin is
prefixed with i686-pc-cygwin (e.g. i686-pc-cygwin-cpp) whereas the build system expects the executables to
have no prefix (e.g. cpp).

Creating links to the build executables and dropping the prefix from the name of each build executables link is
done by a script that was provided by the XFree86 cross-compiling community and slightly modified by
Alexander Gottwald. The text of this script is below, save it in a file on your cross compiling host called
cross-links.sh. Note that the location of the script does not matter, since it contains a reference to the
location of the build tools in the CYGROOT variable.

#!/bin/bash

#

This stuff is required for the Cross Compile Environment.
#

CYGROOT=/home/my_login/cygwin

TARGET=1686-pc—-cygwin

mkdir -p $CYGROOT/STARGET/bin

cd $CYGROOT/STARGET/bin

for i in ../../bin/*; do
if [$i !'= S${i/STARGET-/} 1; then
In -s $i ${i/.*$TARGET-/}
fi
done

ln -s gcc cc

Finally, run the cross-1inks. sh script. There should now be several links in the
/home/my_login/cygwin/i686-pc-cygwin/bin directory.

Building Cygwin/X

Building the source code when cross compiling X Window System is nearly identical to the process described
below in the Section called Native Compiling of the Native Compiling section. One divergence from the
aforementioned instructions is that you will be using a bash shell on your cross compiling host, rather than on
your native Cygwin host; other divergences follow.

1. Indir should generally already be installed if your build host already has the X Window System installed. If
you do not have Indir, you can build it for your build host by following the instructions in
the Section called Building and Installing Indir.

22

Chapter 2. Programming

. When building the entire tree, you must pass CROSSCOMPILEDIR to make to cause the build system to
build for the target, Cygwin, platform:

[harold@CrossHost std]$ make World
CROSSCOMPILEDIR="/home/my_login/cygwin/i686-pc-cygwin/bin" > World.log 2>s&1

[harold@CrossHost std]$

. When rebuilding individual directories of the tree after doing a build of the entire tree, you can simply issue
the make command:

[harold@CrossHost std]$ cd programs/Xserver
[harold@CrossHost Xserver]$ make XWin.exe > XWin.log 2>&1

[harold@CrossHost Xserver]$

. When building a debug version of the entire tree, use makeg, which should generally already be installed,
and pass CROSSCOMPILEDIR to makeg to cause the build system to build for the target, Cygwin, platform:
[harold@CrossHost debug]$ makeg World
CROSSCOMPILEDIR="/home/my_login/cygwin/i686-pc—-cygwin/bin" > World.log 2>&1

[harold@CrossHost debug]$

. When rebuilding individual directories of the tree after doing a build of the entire tree, you can simply issue
the makeg command:

[harold@CrossHost std]$ cd programs/Xserver

[harold@CrossHost Xserver]$ makeg XWin.exe
CROSSCOMPILEDIR="/home/my_login/cygwin/i686-pc-cygwin/bin" > XWin.log 2>&1

[harold@CrossHost Xserver]$

. When installing a standard build of the entire tree, you must pass DESTDIR and CROSSCOMPILEDIR to
make to install the target platform build into /stagingdir and to cause the build system to build a few
remaining programs for the target, Cygwin, platform:

Tip: Never run make install install.man on your host platform without the DESTD IR parameter, as that
will cause the Cygwin build of X Window System to be installed over top of your local X Window System
installation, which would completely destroy your host system’s X Window System installation.

[harold@CrossHost std]$ make install install.man
DESTDIR=/stagingdir
CROSSCOMPILEDIR="/home/my_login/cygwin/i686-pc—cygwin/bin" > install.log 2>&1

[harold@CrossHost std]$

. When installing a debug build of the entire tree, you must pass DESTDIR and CROSSCOMPILEDIR to
makeg to install the target platform build into /stagingdir and to cause the build system to build debug
versions of a few remaining programs for the target, Cygwin, platform:

23

Chapter 2. Programming

Tip: Never run makeg install install.man on your host platform without the DESTD IR parameter, as that
will cause the Cygwin debug build of X Window System to be installed over top of your local X Window
System installation, which would completely destroy your host system’s X Window System installation.

[harold@CrossHost debug]$ makeg install install.man

DESTDIR=/stagingdir
CROSSCOMPILEDIR="/home/my_login/cygwin/i686-pc—-cygwin/bin" > install.log 2>&1

[harold@CrossHost debug]l$

Packaging a Cygwin/X Distribution
Cygwin/X uses a custom build and packaging script that automates all of the tasks required to build, create

binary packages, and source code packages.

Note: These instructions assume that you want to build a distribution from the source packages available
from Cygwin’s setup.exe. You can use these instructions to build a distribution from CVS instead by just
replacing references to /usr/src/xc with the path to the xc/ directory that you checked out of CVS.

1. Wait for these instructions to be updated, sometime after 2004-04-03.

24

Chapter 3. Documentation

Overview

Cygwin/X documentation is written in XML according to the DocBook (http://docbook.org/) document type

definition (DTD). These XML input files are then compiled using an autoconf and automake build system. We

currently build the following output formats: HTML, PDF, PS, RTF, and TXT.

Obtaining the Source Code

As of 2004/04/10 this section of the manual needs to be rewritten.

Setting Up a DocBook Build Environment

Setup a DocBook build environment on Cygwin by consulting the SGML for Windows NT: Setting up a free

SGML editing and publishing system on Windows NT/Cygwin
(http://ourworld.compuserve.com/homepages/hoenicka_markus/cygbook1.html) document.

Building the Documentation

Follow these instructions to build the Cygwin/X documentation source code:

1. Open a shell on your documentation build host; you should see a window like the following:

Username@CygwinHost ~

$

2. Change the current directory to the documentation source code directory:
Username@CygwinHost ~

$ cd cygwin-x-doc-1.0.0

Username@CygwinHost ~/cygwin-x-doc-1.0.0

$

3. Create a build directory and change the current directory to that directory:
Username@CygwinHost ~/cygwin-x-doc-1.0.0

$ mkdir build

Username@CygwinHost ~/cygwin-x-doc-1.0.0
$ cd build

Username@CygwinHost ~/cygwin-x-doc-1.0.0/build
$

25

Chapter 3. Documentation

4. Configure the documentation source code:
Username@CygwinHost ~/cygwin-x-doc-1.0.0/build

$../configure

Username@CygwinHost ~/cygwin-x-doc-1.0.0/build
$

5. Build the documentation:

Username@CygwinHost ~/cygwin-x-doc-1.0.0/build
S make all

6. Building the documentation is now complete.

Packaging a Documentation Distribution

Follow these instructions to build a Cygwin/X documentation source code distribution:

1. Edit the version tag in the third line of the file configure. in to indicated a new version, or to add a branch
name to the distribution. The line containing the version tag should look like:

AM_INIT_AUTOMAKE (cygwin-x-doc, 1.0.0)

2. Open a shell on your documentation build host; you should see a window like the following:

Username@CygwinHost ~

$

3. Change the current directory to the documentation source code build directory:

Username@CygwinHost ~
$ cd cygwin-x-doc-1.0.0/build

Username@CygwinHost ~/cygwin-x—doc-1.0.0/build
$

4. Build the documentation source code distribution:

Username@CygwinHost ~/cygwin-x-doc-1.0.0/build
$ make distcheck

5. The documentation source code distribution should now be contained in the current directory in a file called
cygwin-x-doc-1.0.0.tar.gz.

6. Building the documentation is now complete.

26

Chapter 4. Web Site Maintenance

Foo!

27

Bibliography

Articles

[Angebranndt94] Definition of the Porting Layer for the X vi1 Sample Server, Angebranndt94, Susan
Angebranndt, Raymond Drewry, Philip Karlton, Todd Newman, Robert W. Scheifler, Keith Packard, and
David P. Wiggins, 1994.

Books

[ScheiflerGettys92] Robert W. Scheifler, James Gettys, Jim Flowers, and David Rosenthal, 1992, 1-55558-088-2,
Butterworth-Heinemann, X Window System: The Complete Reference to Xlib, X Protocol, ICCCM, and
XLFD.

[Richter99] Jeffrey Richter, 1999, 1-57231-996-8, Microsoft Press, Programming Applications for Microsoft
Windows: Mastering the critical building blocks of 32-bit and 64-bit Windows-based applications.

[Petzold99] Charles Petzold, 1999, 1-57231-995-X, Microsoft Press, Programming Windows: The definitive
guide to the Win32 API.

[McKay99] Everett N. McKay, 1999, 0-7356-0586-6, Microsoft Press, Developing User Interfaces for Microsoft
Windows: Practical and effective methods for improving the user experience.

[JonesOhlund99] Anthony Jones and Jim Ohlund, 1999, 0-7356-0560-2, Microsoft Press, Network Programming
for Microsoft Windows: Clear, practical guide to Microsoft’s networking APIs.

[Yuan0O1] Feng Yuan, 2001, 0-13-086985-6, Prentice Hall PTR, Windows Graphics Programming: Win32 GDI
and DirectDraw.

[CohenWoodring98] Aaron Cohen and Mike Woodring, 1998, 1-56592-296-4, O’Reilly & Associates, Inc.,
Win32 Multithreaded Programming: Building Thread-Safe Applications.

[CameronRosenblattRaymond96] Debra Cameron, Bill Rosenblatt, and Eric Raymond, 1996, 1991,
1-56592-152-6, O’Reilly & Associates, Inc., Learning GNU Emacs: UNIX Text Processing.

[Lewine91] Edited by Dale Dougherty, Donald A. Lewine, 1991, 0-937175-73-0, O’Reilly & Associates, Inc.,
POSIX Programmer’s Guide: Writing Portable UNIX Programs.

[KernighanRitchie88] Brian W. Kernighan and Dennis M. Ritchie, 1988, 1978, 0-13-110370-9, Prentice Hall
PTR, The C Programming Language: ANSI C.

28

Glossary

B

Bitmap (Win32)

Windows pixel map.

Bitmap (X)

X pixel map with bit depth equal to one. X pixel maps of bit depth not equal to one are called pixmaps.

C

Color Framebuffer Layer

Deprecated X Server layer providing implementations of the X graphics functions to draw on an antiquated
framebuffer device. CFB is optimized to minimize CPU instructions at the expense of additional memory
accesses; this does not work well on modern machines because memory access is the system performance
bottle neck. CFB can only be initialized to draw on one depth of framebuffer per instantiation; this was
done to eliminate CPU instructions that checked the current framebuffer depth, thus saving processing time
on early machines.

Colormap

X Server colormap. Contains a table translating index values to red, green, blue 3-tuples that will be
displayed on the screen when a given index value is contained in a bitmap.

Concurrent Versions System

CVS is an open source version control system used by the majority of open source projects. More
information can be found at the CVS project homepage (http://www.cvshome.org/).

D

Device Dependent X Layer

X Server layer that depends on the hardware; but not the operating system.

29

Glossary
Device Independent X Layer

X Server layer that does not depend on the hardware layer, nor the operating system.

F

Framebuffer Layer

X Server layer providing implementations of the X graphics functions to draw on a modern framebuffer
device. FB is optimized to minimize memory accesses at the expense of additional CPU instructions; this
works well on modern machines because memory access is the system performance bottle neck.

G

Graphics Context

X Server graphics context. Stores information describing a graphics operation to perform, such as the
foreground and background colors, fill style, stipple, and tile.

M

Machine Independent Layer

X Server layer providing user input and graphics display functions that are independent of the machine used
by the DDX layer. The MI drawing functions depend on only three DDX functions: Fi11Spans,
GetSpans, and SetSpans.

O

Offscreen Framebuffer

Essentially a bitmap, in the Windows sense, of size and color format that can be displayed on the screen. An
offscreen framebuffer may be identical in size and color format to the primary framebuffer, but this is not
always required.

30

Glossary
OS Layer

X Server layer that depends on the operating system; but not the hardware.

P

Pixmap

X pixel map with bit depth not equal to one. X pixel maps of bit depth one are called bitmaps.

Primary Framebuffer

The block of memory, essentially a bitmap, that describes what is currently being displayed on the screen.
Any updates to the primary framebuffer will be displayed on the screen after the next screen refresh.

Privates

Additional information associated with internal X Server structures, such as colormaps, GCs, pixmaps, or
screens.

pserver

CVS pserver, short for “password server”, is one of the user authentication methods supported by CVS.
CVS pserver is not secure, as passwords are transmitted and stored as plain text. However, CVS pserver is
desirable for read-only anonymous access to open source CVS trees, as CVS pserver is by far the easiest
method to use.

S

Screen

X Server screen. A screen usually corresponds to a display device; however, Cygwin/X’s X Server
corresponds each screen to one Windows window. A single instance of the Cygwin/X X Server may have
several screens.

Shadow

X Server shadow layer that allows FB to draw to an offscreen framebuffer and occasionally call a DDX
function that transfers the updated regions to the screen.

31

Glossary

X

X Display Manager

An X Display Manager presents a graphical login screen to X users. Often an XDM will allow the user to
select a desktop environment or window manager to be for their login session. Some X Display Managers
are xdm, gdm (Gnome Display Manager), and kdm (KDE Display Manager).

X Display Manager Control Protocol

XDMCP allows XDM to process logins for users remote to the machine that XDM is running on; login
sessions will be run on the machine running XDM. For example, at a university you may use XDMCP to
login to an X session running on an engineering department computer from your dorm room.

See Also: X Display Manager.

32

Appendix A. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. The "Document"”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent" is called "Opaque".

33

Appendix A. GNU rree Documentation License

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

34

Appendix A. GNU rree Documentation License

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

L. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

35

Appendix A. GNU rree Documentation License

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made by
the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming
one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections
entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or
on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate”, and this License does not apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

36

Appendix A. GNU rree Documentation License

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant.
If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

37

