
Pigeoncide project
Analysis of results

Juan Pedro Boĺıvar Puente
Alberto Villegas Erce

Marc Modrow
Sari Sariola

February 3, 2010

Contents

1 Introduction 2

2 How to read the source code 2

3 Game architecture 3

3.1 Resource management and hierarchy 3

3.2 Abstracting the game loop . 4

3.3 The Hollywood principle: signals and events 5

3.3.1 The base.signal module 5

3.3.2 Back to the Panda3D event system 6

3.4 Wiring everything up . 6

3.5 Entities, a place for experimentation 7

4 Implemented features 9

4.1 Hierarchical scene graph . 9

4.2 Physics . 9

4.3 Event-based game logic . 10

4.4 MVC game architecture . 11

4.5 Artificial Intelligence . 13

4.6 Lights and shaders . 13

5 Extra features 14

5.1 Unit testing . 14

1

5.2 Profiling . 14

5.3 Free Software development . 15

6 A note about the graphics 15

7 Conclusion and future work 16

1 Introduction

This document explains the arquitecture and features of the project for the
Introduction to Game Development course which took place in the first semester
in the Turun Yliopisto.

The game description was given in the proposal that we sent to the evaluators
in the firs week of the course, so we will move directly to describing the given
solution.

2 How to read the source code

The game source code is in the src folder of the distribution package. Only a
one-liner main file is included in that folder, the rest of the code is included in
subdirectories. To ease evaluating the source code –and advancing an overview
of the architecture– we describe what is in each of these folders, which are in a
way layers of the architecture. Trying to follow the layers from bottom up:

base This module includes basic facilities that are common to any possible
software application, such as generic implementations of design patterns,
command line argument parsing, configuration storage and loading, etc...

core This module includes core facilities that are common to any possible game
application. This includes the process managers, state managers, basic
Panda3D management, timers, etc.

phys A thin and incomplete wrapper on top of ODE.

ent This include the entity system, providing a bunch of game independent
entities. We discuss entities further later.

game The Pigeoncide specific game implementation.

menu The Pigeoncide menu system.

app The Pigeoncide concrete app facilities.

test Unit tests for many of the modules.

2

3 Game architecture

The whole project was writen in Python (2.2 < version < 3) using the Panda3D[1]
game framework. Panda3D is a highly featured system, including a whole bunch
of interesting features such as a physics engine –actually two of them, a simple
one and an ODE[2] wrapper– to a scene graph 3D engine and sound systems.

However, we soon found that its design didn’t really fit our expectatives, at
least when it comes to architectural aspects. They can not be blamed for that
though, as their objective is not to provide a well engineered architecture, but a
very featured scripting facility that resembles more a domain specific language
built on top of Python than just a game development framework1. Their purpose
is to have small game scripts coded fast, leaving features such as scalability and
manageability of the code apart.

3.1 Resource management and hierarchy

One of the biggest problems that we saw in the Panda3D system is the insistence
on using global state. Even worse than that, the global state was used most of
the time implicitly, by using either the global variables installed as Python built-
ins, or using many of the facilities of DirectObject that installed event listeners
and other entities into global systems via calls to apparently local methods.

Resource management has been and is still one of the biggest problems in
computer programming and that kind of practices does not help at all. Sadly, the
belief that garbage collection has vanished all resource management problems
has not done anything else than making the problem worse, as leaking memory
is not the worst problem of resource management, and it is easy to see badly
programmed Java applications leaving a system blocked because it was leaking
SQL connections2.

Maybe biased by our deep experience with languages supporting the Re-
source Adquisition Is Initialization idiom3 is we believe that hierarchy is a good
thing. This hierarchy, can be made explicit by the means of lexical scope –such
as in the RAII case– or class design such as the composite[3] pattern. Panda3D
properly implements this in the scene graph.

We take this one step further and make other basic game engine sub-systems
hierarchical, providing easier means to control resources, these are: the task

system, the event system, and our state system. Let’s discuss them further
now.

1This explains why they abuse Python features and insist on injecting their global variables
–which should be punished anyway– into the builtins module.

2No offence, but Java seems to be a honey pot for resource leaks, probably because of its
attraction to frustrated C/C++ programmers looking for the relief of garbage collection.

3We will not say names, because the lecturers made their language preferences clear during
the course ;)

3

3.2 Abstracting the game loop

Most computer games share a common basic structure: a game loop that iterates
gathering the use input, updating the state in response to the input and the
previous state, and updating the output to reflect these changes. This game
loop iterates around many times per second –usually 60 or so.

For this purpose we implemented a task module that abstracts the game
loop. This is a well know game pattern and described in books such as [4], so
we will not step deeply in its description. The important question here is why
did we re-implement a feature that was already in Panda3d?. We answer the
question here:

1. Because of resource management. Many entities in the game may generate
many tasks that have to be executed. However, the task system provided
with Panda3D is flat, and therefore one could not do such a simple thing
as “pause all the tasks belonging to this object”. The solution for us was
to have a hierarchical task manager, where one object could hold its own
local task manager. This way, for example, using pause () on the local
task manager will pause all its child tasks.

We had an interesting discussion about this in the Panda3D with one
of its main developers[5]. There, when asked about the convenience of
re-implementing the task manager the Panda3D developer argued that
we would loose nice features that they implement such as the graphical
task browser that he found very useful in the debugging process. We
finally decided that a hierarchical task manager would not leak tasks and
therefore would not need such a tool, and this has proven to be true. When
asked about how to group related tasks together, he suggested giving them
a name such as ‘‘parent-taskname’’ and removing them by using blobs
like ‘‘parent-*’’. The fact that Panda3D implements such things as
finding tasks using blobs clearly reflects a feature overkill that could be
made not needed by using a proper design4.

2. Many features of their task system seemed too heavy for us. Every task is
identified and managed through a string. Also, they where ordered using
priority queues, what makes adding and deleting tasks logarithmic. We
wanted to be able to abuse the task system adding and deleting them all
the time –preferably in constant time– and we did not find the need for
string identification for them, etc.

So we came up with a nice and small task system that is the basis for all the
game, and can be further studied in the core.task module in the source package
of our game. In our design, a TaskGroup is the task manager, but it is also a
Task, so they can be hierarchically composed easily. Like in Panda3D, simple
functions can be used as tasks too. We also provide a bunch of utility tasks in
that module that, combined with lambda’s and such make it really easy to write

4Re-reading this, it can seem a bit harsh... I am not arguing that Panda3D developers are
unable to come up with proper design, and I really believe that they have done a great job..
Once again, I feel that those kind of features are very useful for unexperienced developers
willing to make quick-and-dirty games, which is the main target audience of Panda3D.

4

complex animations and interactions in a one-liner –such as task.sequence,
task.parallel, task.wait, task.fade, ... These utility tasks cover most of
what Panda3D call intervals and are very easily implemented thanks to our
design. Once again, one could argue that Panda3D intervals are more featured,
but I argue that most of those features are not needed ;)

Still, we believe that our system still have space for improvements. The main
interesting features that we can think of are the support of multi-threading, and
optional support for explicit task ordering as done by Panda3D by assigning
priorities. Also, it would be nice for some kind of turn-based games that run on
battery based devices to have non-busy waits.

3.3 The Hollywood principle: signals and events

The so-called Hollywood principle states that “you should not call us, leave
your script and we will call you.” That is the essence of modern object oriented
programming and the Model-View-Controller architectural pattern that this
game implements. In this, the view leave a reference in the model, so they
get notified when the controller alters it. To achieve this, most of the time the
observer [3] and multicast [6] design patterns come handy.

Slot-signal libraries usually provide a generic implementation of the pattern5.

3.3.1 The base.signal module

Because we knew before hand that we where going to use observers all along
the project, the first thing that we started to write just after the course began
was the slot-signal mechanism –along with the rest of the base module.

A signal is an object that represents an event that can ocurr. This is op-
posed to the event mechanism proposed in the course and used by Panda3D,
where events are string identifiers and all go through the event manager. A slot
is an object that represents a listening end on the signal. When the signal is in-
voked using either the notify () method or the convenient overloaded call

operator, the signal calls all the listening slots, passing additional parameters if
required. Slots are usually arbitrary function objects.

The main problem with the signal mechanism is that they add complexity
for the resource management issue that we have discussed all along the way,
because it favours setting up complex object meshes that can be hard to track.
For this reason, we have implemented a bunch of different facilities that ease
this task, such as the weak slot and slot decorators, and the Tracker and
Trackable classes implemented in base.connection. Also a base.observer

modules provides easy means to generate whole signal based interfaces for emit-

5Pattern orthodoxes find this statement a bit awkward, as patterns are not reusable pieces
of code but reusable pieces of design. However, it is a fact that modern computer languages
can implement patterns with reusable code; a illuminating masterpiece in this topic is Alexan-
drescu’s [7]. Also, some design patterns are often implemented or superseded by language
features, specially in dynamic languages such as Python, but also we can see this tendency in
C# delegates –observer pattern– or Scala object-class –singleton pattern.

5

ters and listeners, which helps in the task of wiring signal connections where we
are interested in a whole interface. The implementation was very educative as
it heavily uses metaprogramming and advanced python features such as data
descriptors, decorators, and MRO based collaborative methods.

3.3.2 Back to the Panda3D event system

As we said, Panda3D uses a different approach to this, with an event manager
that dispatches all the signals, that are identified by strings. One can listen on
a concrete signal telling it to the event manager. All the basic input handling
is done in this way by Panda3D.

The main problem, once again, is that this event manager, called a messenger
in Panda3D, is global. We wanted some form of scoping and hierarchy. We wrote
a similar facility to Panda’s messenger, the EventManager in base.event, that,
while missing some unneeded features, was able to forward all messages to other
event managers. This way we got the needed hierarchy: one can have its own
event manager locally that can be used to receive all its parent signals, while
still being able to, for example, mute all its local subscribers. Also, this system
mapped the event system to the signal mechanism, providing further conve-
nience.

The only problem here was that Panda3D does not have the possibility to
have a “catch-all” method for its events. This was surprising because that
is one of the main advantages to have a event manager instead of independent
signal objects. To be able to forward Panda3D’s events to our event hierarchical
system we only could modify the Panda3D implementation. Because we wanted
the game to be compatible with third party distributions of the library, this
was a no-no. But then Python dynamism comes with an ugly but convenient
technique to solve this paradox: monkey patching. This is, modifying a class
or object’s implementation at runtime. Our modifications are implemented in
the core.messenger patch module, which should be loaded before any other
Panda3D module.

This has an important drawback: our game depends on Panda3D’s Messen-
ger class implementation, and internal changes on it will break it. It seems to
work properly with version 1.6.X and 1.7 thought.

3.4 Wiring everything up

Specially in this MVC context, we end up with a mesh of objects that commu-
nicate with each-other, in their role of either model state, view, or controller.
Someone else, a mediator [3], have to wire these things up.

On the other hand, we have been talking all the time that we have carefully
implemented hierarchical object structures in order to achieve less coupling and
local changes to certain scope. The question is, then how to define the scope of
a game entity.

For these two purposes the core.state module comes into hand. There we

6

have a StateManager and State class. The state manager provides a stack based
state machine implementation. A state can be something like a menu screen, a
game, a loading screen, etc. A game itself can be divided into different states,
if needed. A state is notified whenever it is no longer the top of the state stack,
and when it is again the top of the stack, for example. States, combined with
local managers, enable us to implement trivially otherwise not-so-easy features
such pausing the game, having an in-game menu, etc. Every state provides its
own task manager and its event manager.

The whole application is driven by states. The basic application framework
is abstracted in the base.app and refined to work with states in core.app. From
there onwards, one just register states and moves around them by changing the
current state, entering a sub-state, leaving a state...

Also, the states are lightweight enough to be used to implement other state
machine based features such as AI. Still, there is a to-do note in the state module
talking about refactoring states to have an even lighter version for such purposes
in the future...

3.5 Entities, a place for experimentation

What is an “entity”? An entity is an object inside the game world. That is all
what we can say about it. But, as for concrete entities, we can say that:

1. They can have a lot of orthogonal features. For example, they can be a
physical entity that reacts to its environment. It can be an entity rep-
resented visually by a 3D model, or an animated actor, or a 2D texture.
Or it might be a physical entity, but that stands all the time, such as the
player does. An infinite etcetera follows...

2. When writing a concrete entity, or an orthogonal feature for an entity, we
want to concentrate on the logic that drives the entity or the feature that
it adds, and not on boilerplate (a) resource management or (b) object
wiring.

During the course, the lecturers talked about event-driven architecture, and
at some point also about how things can actually get messy –i.e. the example
about the interactions between the physics system and the scene graph. Also,
while developing the base module we had been learning a lot about advanced
Python features, and some background voice was asking for getting rid of all that
event-based thing to try to explore something... else. Then, we had access to
the BHive source code, the event based game engine developed by the lecturers
of this course, in order to find some inspiration.

The world.WorldLinkers module convinced us about trying a different ap-
proach. The whole thing seemed too static for a dynamic language, we thought.

The fact is that events, as used by BHive, provide a very nice way to keep
features orthogonal, as stated in our first requirement, but fail in the second.
What we propose in our experiment is something different: using a language

7

feature, multiple inheritance, to combine these orthogonal features of a single
entity. MI! That is evil! Well, not that much...

In (good) dynamic languages like Python, there is a nice feature usually
referred to as call-next-method, after the name of the function that implemented
it in the Common Lisp’s object system. In Python, this is implemented using
the super built-in that returns the proxy of an object that calls the next method
of a class. This feature allows to call all the methods in a multiple inheritance
environment in a consistent order. This consistent order is a linearization of the
class hierarchy that satisfies the following conditions:

1. If a class Derived inherits from a class Base then Derived comes first.

2. If a class Derived inherits form both class BaseA and BaseB, the BaseA

also comes before BaseB –this is, there is left-to-right order in the same
level of a hierarchy.

3. Every class appears only once in the linearization.

Methods designed to work in this way –this is, they pass the control to the
super class, where the super is defined in the previous terms6– are called col-
laborative, because they collaborate with unknown nodes in the class hierarchy.
This feature is only possible in dynamic languages, because the concrete type of
super inside a given class can change when other classes derive from it7. Much
further can be said about how to program using this technique, but this is not
the purpose of this text.

What is to be said, is that we use this to wire, implicitly, using language
features, the connections between these orthogonal facilities of a game entity.
When one of these features depends on some other features, it derives from them.
The C3 MRO ensures that these dependencies will be correctly preserved even if
the hierarchy gets very complex, so no coupling is produced with other unrelated
features.

By using this, we solved problem 2.b. Also, to solve 2.a, the entity system
comes handy. The resources required for a given entity are given by its entity
manager. Every created entity is registered into the entity manager that it
receives in its constructor, and also keeps a weak reference to it so it can use
some shared resources at its hierarchy level –for example, the task manager or
event manager. Note that entity managers can also be combined using this
mix-ins technique. There is also a GameState that specialises State adding a
entity manager that is set up with entity manager able to hold visual an physical
entities at a local scope, something that is achieved, for example, by allocating
its own node in the scene graph. The entity manager is usually also in charge of
keeping track of all the entities for easy cleanup when we leave the state, and it
manage the entity resources; i.e. the PandaEntityManager allocates a new node
for the entity in the scene graph on its creation, and removes it on its disposal.
This can be sometimes done with the collaboration of the entity itself.

6The C3 Method Resolution Order. Further literature can be read here [8][9].
7Still, we have an idea for some approximation for C++ in mind using heavy template

metaprogramming...

8

Most of game independent entity facilities are developed inside the ent sub-
modules, while many specific ones are implemented in the game module. We
are very happy of how we achieved to minimise boilerplate and maximise power.
Still, some things can be improved and the design is a bit experimental. The
implementation is plagued of to-do notes which are loud thoughts on how to
improve the design or the implementation. Much more can be said about this
system, for example, what decorators and delegates are in this context, and how
they are used to provide “dynamic” entities –i.e. facilities that can be added
and taken from an living object. We make this more clear in later sections, but
this text is getting too long, so we leave the code as a testimony of it, and we are
open to have discussions about this with the evaluators of the course in person
:)

4 Implemented features

We implement most of the features proposed in the course. We describe in the
following which of them and how.

4.1 Hierarchical scene graph

We use Panda3D hierarchical scene graph in all our graphical code. All the
entities into a game state are child of a sub-node of render –this is, only the
one node per state is in the render root node to avoid its pollution. Each entity
has its own node, with the current state node as its parent. Some other sub-
nodes are used to tune the relative position of the parts of an entity. We also
use further features of the scene graph, such as attaching the node of a weapon
to the “hand” joint of the skeleton of the animated boy, and properly using our
entity combination system to inject its coordinates to the physics system, etc.

4.2 Physics

We use the ODE wrapper distributed with Panda3D as physics engine. We
must say that this has been quite painful, for the following two reasons:

1. ODE is very bad at solving the tunneling effect. This means that when the
frame-rate drops, tunneling happens a lot, specially for fast entities. This
was specially a problem for the pigeons, but we partially solved the prob-
lem by manually sweeping its collision volume[10]. The collision geometry
of a pigeon was initially a sphere, but we changed it to be a cylinder that
we use as a swept sphere whose length depends on the distance that the
entity has moved in this frame.

Still, the problem sometimes persists for other entities at low frame-rate
and fast movement conditions. One solution is to try to keep the simula-
tion running at a different frame-rate than the rendering, but this is less
trivial as it might seem...

9

2. Either ODE or the Panda3D wrapper is plagued of bugs. When doing
many apparently inoffensive things, but that ODE dislikes, it either seg-
faults or crashes the application with just a not-very-informative message.
When debugging your application this makes it really a mess, because
there is no way to backtrace the segmentation fault or ODE error to the
Python code. Sometimes one can get a small backtrace of the C++ part
of the wrapper executing Python inside gdb, but there is no way to know
at which point of the Python script the problem occurred.

Sadly, there is no Python wrapper for Bullet physics[11] apart from the one
embedded in the Blender Game Engine, so we do not have a Free Software
replacement for ODE in the near future.

4.3 Event-based game logic

We have not been very orthodox in implementing this, as explained in section
3.5. However, our alternative architecture is as capable or more than an event-
based one. Also, the fact that we did not use events to join together the different
faces of a world object does not mean that we did not use events for other things
like one two many inter-entity communication.

As we described in 3.3, we have put a lot of effort in implementing the generic
low level components that are the basis of a event based architecture. And we
use events, all the time. They are used to wire up most of the game logic. For
example, when a physical entity collides, it signals a on collide event, that
is listened by the killable entity that it belongs to, that in turn shows some
particle effects and sounds, and then triggers the on death signal, that in turn is
listened by a function that finishes the game and enters the game over state for
the player entity. Or if the entity is a pigeon the on death signal is listened by
a function that increases the counter of dead pigeons and by another function
that checks whether there are more pigeons in the level to maybe enter the game
win state. This is just one simple example, but all our code is plagued of this
kind of event driven communication.

Also, while we did not go very further in this in our previous description,
while collaborative methods are used to communicate the different aspects of a
single entity, events are used to communicate among unrelated entities. Actu-
ally, an entity can be observable if it dispatches events on its spatial properties
updates. In this way, you can make a pigeon follow the boy or follow some piece
of food by changing no line of code apart from one that changes which entity’s
events the pigeon listens to. The same happens for the camera, and so on.

We even use events for the configuration system. Whenever a configura-
tion node is changed a signal is dispatched, allowing unrelated listeners to be
updated depending on the configuration state –for example, when the music-
volume option is changed, the menu can listen to update the position of the
scrollbar that changes the music volume, and an object in charge of managing
the Panda3D system changes the volume parameter of the audio manager in
charge of playing the music.

10

So, while having an non canonical –but maybe better?– implementation of
our events and entities systems, we definitely have a event based architecture
for gluing up almost all the application logic.

4.4 MVC game architecture

A consequence of the event based game logic is that we can easily come up
with a MVC game architecture. However, when we introduce the mixin based
entities it might seem non-obvious how our architecture is MVC. More exactly,
how can be the views and controllers of an entity decoupled from its state if
they are combined via inheritance?

There are three ways in which this is achieved, and the best one depends on
the concrete requirements:

1. First, there is the use of delegates and decorators system. If an entity
mixin provides a delegate version of it, its controller can be dynamically
changed using decorators. The decorator implementation is shared with
the non-decorator version of the entity mixin, the only difference is that
the decorator one controls its dependencies via a delegate –this is made
in a transparent way, thanks to Python’s magic.

The decorator can be seen as a controller that adds behaviour to a “static”
model entity on runtime. For example, this code could be possible:

pigeon_model = mixin (PhysicalEntity) (entities = state.entities)

pigeon_controller = mixin (BoidEntityDecorator) (delegate = pigeon_model)

One can think that this produces code duplication, because we need to
have two different versions of the BoidEntity and an alternative controller
version. However, the implementation can be shared, and the following
pattern arises when developing a controller that can be used embedded
with the model or as a separate object:

class BoidEntityBase (Entity):

"""

Implementation of the flocking algorithm, asuming that all the

needed data is embedded into self.

"""

...

class BoidEntity (DynamicPhysicalEntity, BoidEntityBase): pass

class BoidEntityDecorator (DelegatePhysicalEntity, BoidEntityBase): pass

The delegate is in charge of using properties and functions to forward all
the interface that a DynamicPhysicalEntity provides through another
object. These delegates by now generate a bit of boilerplate because the
forwarding is encoded by hand, by we are planning to adapt the function-
ality of base.proxy to generate it automatically using Python’s metapro-
gramming magic :)

11

2. Note that the previous code works only for wiring controllers with the
model, because there is no way by which the decorator would be notified
when the delegate changes, and, as such, we cannot connect a view to the
model in this way.

But, as the previous code shows, one can build the desired class on runtime
mixing the needed entity components. For this, we provide the utility
function mixin that creates a new class from a set of bases. For example,
this code could be valid8:

if game_is_local:

pigeon = mixin (BoidEntity, DynamicPhysicalEntity, ActorEntity) (...)

elif game_is_client:

pigeon = mixin (ActorEntity, RemotePhysicalEntity) (...)

elif game_is_server:

pigeon = mixin (BoidEntity, DynamicPhysicalEntity, ServerPhysicalEntity) (...)

pigeon.set_position (100, 100, 100)

In that way, the call-next-method mechanism would make sure that when
a manipulation method is called on this model+view mixin object it prop-
agates correctly through all the hierarchy notifying the views.

3. However, there is still a problem there. In the original MVC, one should
be able to connect the model to many arbitrary instances of a view –in a
mixin we can have one instance per view type only. Also, in the previous
example one can not change the connections of the model with the views
after the object is built, because they are embedded in the class hierarchy
of the object.

For this purpose, we can fall-back to the events mechanism, extending the
entities interface with signals and events. This example code shows how
this can be made, for example, connecting a follower camera to a pigeon.

class FollowCameraEntity (Entity, Trackable, SpatialEntityListener):

...

boy = mixin (Boy, ObservableSpatialEntity) (...)

pigeon = mixin (Pigeon, ObservableSpatialEntity) (...)

camera = FollowCameraEntity (...)

...

pigeon.connect (camera)

...

camera.disconnect_sources () # Method added by Trackable

boy.connect (camera)

...

If it was not a trackable we have to remember who it was connected to.

boy.disconnect (camera)

As we can see, we provide a nice way to separate algorithms from the needs
of the object topology. They should specify their requirements inheriting from
interfaces that are implemented in different ways, and then later combined in
runtime.

Note that because abstracting all needed Panda3D features in our system
is a lot of work, and because we sometimes took shortcuts in our code for

8We do not implement networked game, so some of the classes described are ficticious.

12

faster development –like skipping separating interface and implementation– our
system might not always be as flexible as previously shown if taken just outside
the box. But the architecture not only is MVC, but it can be more or less MVC
depending on the concrete needs of our system as previously shown, and only
polishing a pair of corners in the code is left to make the implementation 100%
loyal to this explained methodology.

4.5 Artificial Intelligence

The pigeons movement is modelled using Craig Reynold’s flocking algorithm
[12][13]. This allows to model the complex behaviour of the flock of birds using
autonomous agents with a set of simple rules. We implemented it in a quite
generic way –does not depend on any kind of representation, being easy to
combine with any using our MVC architecture.

Also, that is not enough to model the complex behaviour of the pigeons
in our game. A state machine is used for this, with many states: fly, walk,
follow, fear, eat, hit, land, return, attack... Most of the states just changes the
parameters of the flocking algorithm, but some of them do few extra things.
The fact that they are implemented using the state manager and our generic
flocking algorithm makes the code small and simple.

Sadly, our flocking implementation has an O(n2) time complexity, being the
biggest performance bottleneck of the application, and making the application
not very responsive when having a high number of pigeons in the scene –more
than 40 pigeons drops the framerate to 30 FPS in our computer and the tunnel-
ing problem of ODE becomes significant. We are planning to improve this in the
future by using proper space partitioning to reduce the time complexity of the
algorithm, and even moving the core of the flocking algorithm implementation
to C or C++ code if needed.

4.6 Lights and shaders

We do not use many lights in the scene because we really do not needed them
much –or where very busy discovering the concepts behind our experimental
multi-paradigm architecture. Still, there is a light on the top that provides
some sunlight and an ambient light to avoid excessively dark non-illuminated
areas.

However, we still wanted to have nicer visuals, so we used glow mapping to
get nicely shaded laser fields and highlighted sticks. We would use them in more
places if it were not because of the few problems that we had with the graphics
–see the later section.

We implemented the glow mapping using a fragment shader pipeline. First
the whole scene is rendered to an off-screen buffer using an alternative texture for
each model (the glow map) that is combined with the normal one to determine
which regions should glow. Then that off-screen buffer is blurred using two
shaders, one that blurs the texture vertically and another one that blurs it

13

horizontally. Then, this buffer is merged on top of the normally rendered scene,
resulting in a very nice glow effect.

Also, during the first stages of development we explored the usage of Panda3D
embedded shader features, specially with the cartoon shader. We later stopped
using it because the results where not good looking enough. Specially, the
thresholded lighting was restricted to only two lighting tones (lit and non-lit
areas) and the ink shader did not adjust the line width to the distance from the
camera, leading to bad looking far entities and wrong perspective perception in
the player’s eye.

5 Extra features

Here we comment some extra things that, while not included in the feature list
of the course project, are worth mentioning.

5.1 Unit testing

Unit testing has been used, specially in early stages of the development. 1319k
lines of unit tests have been produced, covering most of the base module and
part of the core module. However, at later stages of the development we stopped
doing it, for the following reasons:

1. While our of code is globals-free, Panda3D code is not, and this makes
unit testing quite hard. Because we could not build mockups for some
essential Panda3D components, it was cumbersome to continue building
unit tests for everything.

2. The entity system, core of game-logic part of our program, has been very
experimental and was, in a way, a research effort. As such, the interfaces
have been evolving all the time, and are still evolving, as new concepts
and patterns where discovered and polished.

We include a unittests script to run the unit tests.

5.2 Profiling

We agree with Donald Knuth’s statement: “early optimisation is the root of
much evil”[14]. However, specially when abusing dynamism and when build-
ing complex object topologies, it can become non-evident where the source of
inefficiency is when the program does not run as fast as we desire.

At few points we found that the program had a slower behaviour than ex-
pected, and profiling was the tool to find those performance bugs and solve
them. We include a profile script that runs the program and then outputs
different profiling measures using Python cProfile module.

14

5.3 Free Software development

We believe in the freedom of users of software, and that an open development
process can improve software quality both technically and ethically.

For this reason, we have been developing all the software in the GNU free
software development forge Savannah. The project page, where one can access
the different trackers and the SVN revision control system can be found here:

https://savannah.nongnu.org/projects/pigeoncide/

Also, because the graphical artists, M$ Windows users, had problems ac-
cesing the Savannah’s SVN –which uses SSH’s asynchronous encryption– they
created their own SVN space in SourceForge, which uses just password security.
Their SVN space can be accessed here:

http://sourceforge.net/projects/pigeoncide/

All the software is released under the GPL3 license.

6 A note about the graphics

The game is not as good looking as expected initially –our group had more
graphic artists than any other group! Because our graphic artists still deserve
their recognition, lets explain these issues here.

First, Tapio Noranta, one of the graphic artists of the initial team, left the
in early stage of the development. This left us with two members: Sari Sariola,
working as 2D artist, and Marc Modrow, working as 3D artist.

Then, we did not plan that Marc was leaving back to Germany in January
to work in a full-time position. This means that the fine tuning required to
integrate the graphics into the code in the late stages of the development had
some communication overhead.

Specially, in this latest part of the project we where unable to correctly
export the models to a format that Panda3D would read and preserve all the
properties. Specially, the UV map was missing in animated models, making the
texturing look quite ugly in both pigeons and the kid. Also, the models where
developed in 3D Studio Max 2010, a program that, thanks to its privative
model, seems a dead-end when it comes to format compatibility –it even is not
backwards compatible with previous Max versions, probably as an attempt to
force developers to switch to the latest version.

We include the 3D graphics of the project correctly rendered in this section,
so the digital artists can get all the credit for their work in this project that
they deserve. We also include here some extra 2D artwork developed by Sari
Sariola (figure 8) and Juan Pedro Boĺıvar (figure 9) that did not get into the
final release. The rest of the 2D graphics, all made by Sari, are in the package
making it shine :)

As a last comment, the model used for the environment first –and last, by

15

https://savannah.nongnu.org/projects/pigeoncide/
http://sourceforge.net/projects/pigeoncide/

now– level also looks a bit ugly because it was not intended to be in the last
release. Once again, we had an offer from a third artist who was going to replace
Tapio in this task, but she eventually was too busy to finish this task so the
coders had to adapt the test model to add some texture and fix some collision
detection issues in a rush during the last weekend because we suddenly found
ourselves without scenery.

Figure 1: Rendering sample of the laser stick.

Figure 2: Rendering sample of the baseball bat.

7 Conclusion and future work

During this project we developed a funny game that allows us to experience the
fun of the childs play of chasing pigeons in a wicked way. The game provides an
enjoyable game play while the player discovers how the complex behaviour of
the pigeons cause them to react in different ways to his actions and learns how
to use this to achieve his goals.

From a personal point of view, developing this game was quite a lot of

16

Figure 3: Rendering sample of the boy.

Figure 4: Rendering sample of the lollypop.

Figure 5: Rendering sample of the pan.

17

Figure 6: Sample of the pigeon rendered with our initial cartoon shaders en-
abled.

Figure 7: Rendering sample of the rolling pin.

effort, and, to be honest, exceeded the time-investment expected for it. We
wrote almost 12k lines of carefully crafted Python code but, what was more
educating, explored the frontiers of programming languages, software design,
game architecture. Also, we –sometimes painfully– learnt how it is hard to
meet the deadlines in these kind of project and how important the cooperation
between programmers, artists, and other roles in a game development team is
for the success of the final work.

Still, we feel that there is more work to do and it would a pity to stop the
project now. There are two ways in which the software could be improved:

1. Firs of all, we would like to turn this kind of one-level (but still fun)
demo into a real game that provides hours of joy. For this, we would like
to get better graphics by fixing the texturing issues, adding the missing
animations –like boy jumping, pigeon eating, etc.– and, definitely, having
few different scenarios. The later would allow for a more increasingly

18

Figure 8: Concept art for the game.

Figure 9: Concept art for the game.

challenging game-play with inter-level bonuses, power-ups, etc. We also
have some sounds in the data folder that we did not integrate in the game
because of the lack of time.

Also, the code was ready to add some nice features with trivial effort like
local multi-player game-play –both cooperatively and competitive– but the
timing constraints of the project did not allow us to implement them. It
would be nice to get them ready eventually. Other more complex features
such as networked game-play would require a deeper time investment and
engine work:

2. Second, we had a very nice time developing the game engine. We believe
that there is a lot of potential in it but there is more effort needed, both in
design and keyboard-punching. We have further ideas on how to improve
it that we could not deeply describe in this brief document. We would

19

like to keep exploring Python’s magic to build the tools needed for non-
expert programmers to correctly use the system without understanding
the complex concepts on which it lies. Also, while we supported both slot-
signal based and named centralized events we usually favoured the first.
While good in many ways, sometimes it added complexity to the object
mesh. We have some ideas on how to keep diminishing these drawbacks
and also extend the usage of named events bounded to the hierarchical
event manager. And also on how to add the proper tools to definitely
integrate pain and boilerplatelessly the mixin based Entity system together
with named events. Together with polishing the wrappers of the lower level
libraries, it could be possible to come up with a very nice engine where
the user could concentrate on describing the high level logic of his game in
the form of entities and more abstracted states without ever caring about
low level issues.

Together with Python’s impressive introspection features this leads us to
imagine graphical point-and-click tools for game development built rela-
tively easily on top of this system. Also, we would like to explore the
possibilities to add auto-magical networking features under the entity sys-
tem, so the games can go online with almost no effort. Further, it could
be possible also to get rid of Python’s performance bottleneck moving a
lot of the code of the under-end-user-layers of the engine to more efficient
compiled typed languages. And also eventually substitute the Panda3D
and ODE dependencies for more preferred ones like Ogre3D and Bullet
engine.

As you can see there are many ideas –someones just too crazy– to continue
the development of this game and its engine. Because we have some other
personal and professional projects and a personal life, you can take this as an
open request for collaboration to the to the Game Development Club in UTU
;)

References

[1] Mike Goslin and Mark R. Mine. The Panda3d graphics engine. IEEE
Computer, 37(10):112–114, 2004.

[2] Russel Smith et al. Ode. Open Dynamics Engine. Web page: http://www.
ode.org, 2001-2004.

[3] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. De-
sign Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley, March 1995.

[4] Mike McShaffry. Game Coding Complete. Paraglyph Publishing, 2003.

[5] raskolnikov, drwr, et al. Conversation about the panda3d task manager.
Web page: http://www.panda3d.org/phpbb2/viewtopic.php?t=7328,
2009.

20

http://www.ode.org
http://www.ode.org
http://www.panda3d.org/phpbb2/viewtopic.php?t=7328

[6] John Vlissides. Pattern hatching: design patterns applied. Addison-Wesley
Longman Ltd., Essex, UK, UK, 1998.

[7] Andrei Alexandrescu. Modern C++ design: generic programming and
design patterns applied. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[8] Michele Simionato. The python 2.3 method resolution order. Web page:
http://www.python.org/download/releases/2.3/mro/.

[9] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford,
and P. Tucker Withington. A monotonic superclass linearization for dylan.
In OOPSLA ’96: Proceedings of the 11th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages
69–82, New York, NY, USA, 1996. ACM.

[10] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann, Jan-
uary 2005.

[11] Game Physics Simulation. Bullet physics. Web page. http://www.

bulletphysics.com, 2001-2004.

[12] Jouni Smed and Harri Hakonen. Algorithms and Networking for Computer.
John Wiley & Sons, 2006.

[13] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics, 21(4):25–34, 1987.

[14] Donald E. Knuth. Structured programming with go to statements. Com-
puting Surveys, 6:261–301, 1974.

21

http://www.python.org/download/releases/2.3/mro/
http://www.bulletphysics.com
http://www.bulletphysics.com

	Introduction
	How to read the source code
	Game architecture
	Resource management and hierarchy
	Abstracting the game loop
	The Hollywood principle: signals and events
	The base.signal module
	Back to the Panda3D event system

	Wiring everything up
	Entities, a place for experimentation

	Implemented features
	Hierarchical scene graph
	Physics
	Event-based game logic
	MVC game architecture
	Artificial Intelligence
	Lights and shaders

	Extra features
	Unit testing
	Profiling
	Free Software development

	A note about the graphics
	Conclusion and future work

